Answer:

Step-by-step explanation:
The opposite angles in a quadrilateral theorem states that when a quadrilateral is inscribed in a circle, the angles that are opposite each other are supplementary, their degree measures add up to 180 degrees. One can apply this here by using the sum of (<C) and (<A) to find the measure of the parameter (z). Then one can substitute in the value of (z) to find the measure of (<B). Finally, one can use the opposite angles in a quadrilateral theorem to find the measure of angle (<D) by using the sum of (<B) and (D).
Use the opposite angles in an inscribed quadrialteral theorem,
<A + <C = 180
Substitute,
14x - 7 + 8z = 180
Simplify,
22z - 7 = 180
Inverse operations,
22z = 187
z = 
Simplify,
z = 
Now substitute the value of (z) into the expression given for the measure of angle (<B)
<B = 10z
<B = 10(
)
Simplify,
<B = 85
Use the opposite angles in an inscribed quadrilateral theorem to find the measure of (<D)
<B + <D = 180
Substitute,
85 + <D = 180
Inverse operations,
<D = 95
This conversion<span> of </span>720 seconds<span> to </span>hours<span> has been calculated by multiplying </span>720 seconds<span> by 0.0002 and the result is 0.2 </span>hours<span>.</span>
It’s a because Josh and him had 8907
Answer: ( 77.27 , 83.93)
Therefore at 95% confidence/prediction interval is
= ( 77.27 , 83.93)
Step-by-step explanation:
Confidence interval can be defined as a range of values so defined that there is a specified probability that the value of a parameter lies within it.
The confidence interval of a statistical data can be written as.
x+/-zr/√n
Given that;
Mean x = 80.6 words per minute
Standard deviation r = 7.2
Number of samples n = 18
Confidence interval = 95%
z(at 95% confidence) = 1.96
Substituting the values we have;
80.6+/-1.96(7.2/√18)
80.6+/-1.96(1.697056274847)
80.6 +/- 3.33
= ( 77.27 , 83.93)
Therefore at 95% confidence/prediction interval is
= ( 77.27 , 83.93)
Answer:
No, the vertices of the image and pre-image do not correspond.
Step-by-step explanation: