<h2>(1)</h2><h2> =(a+b)(3c-d)</h2><h2> =a(3c-d)+b(3c-d)</h2><h2> =3ac-ad+3bc-bd</h2>
<h2>(2)</h2><h2> =(a-b)(c+2d)</h2><h2> =a(c+2d)-b(c+2d)</h2><h2> =ac+2ad-bc-2bd</h2>
<h2>(3)</h2><h2> =(a-b)(c-2d)</h2><h2> =a(c-2d)-b(c-2d)</h2><h2> =ac-2ad-bc+2bd</h2>
<h2>(4)</h2><h2> =(2a+b)(c-3d)</h2><h2> =2a(c-3d)+b(c-3d)</h2><h2> =2ac-6ad+bc-3bd</h2>
Answer:
<u>Perimeter</u>:
= 58 m (approximate)
= 58.2066 or 58.21 m (exact)
<u>Area:</u>
= 208 m² (approximate)
= 210.0006 or 210 m² (exact)
Step-by-step explanation:
Given the following dimensions of a rectangle:
length (L) =
meters
width (W) =
meters
The formula for solving the perimeter of a rectangle is:
P = 2(L + W) or 2L + 2W
The formula for solving the area of a rectangle is:
A = L × W
<h2>Approximate Forms:</h2>
In order to determine the approximate perimeter, we must determine the perfect square that is close to the given dimensions.
13² = 169
14² = 196
15² = 225
16² = 256
Among the perfect squares provided, 16² = 256 is close to 252 (inside the given radical for the length), and 13² = 169 (inside the given radical for the width). We can use these values to approximate the perimeter and the area of the rectangle.
P = 2(L + W)
P = 2(13 + 16)
P = 58 m (approximate)
A = L × W
A = 13 × 16
A = 208 m² (approximate)
<h2>Exact Forms:</h2>
L =
meters = 15.8745 meters
W =
meters = 13.2288 meters
P = 2(L + W)
P = 2(15.8745 + 13.2288)
P = 2(29.1033)
P = 58.2066 or 58.21 m
A = L × W
A = 15.8745 × 13.2288
A = 210.0006 or 210 m²
Answer:
One
Step-by-step explanation:
A, B, R and C lie on the same plane, while the others do not
Answer:<1=63.5
<2= 124 = 34+90
<3= 29.5 =59/2
<4= 90
<5= 54 108/2
<6=116.5
<7=121. 53+68
Step-by-step explanation: