Answer: Constant
No matter what the input x is, the output f(x) is going to be -4. Therefore, the output is constant.
Note: f(x) can be interchanged with y. So we can say y = -4.
Answer:
1/2
Step-by-step explanation:
Base case: if <em>n</em> = 1, then
1² - 1 = 0
which is even.
Induction hypothesis: assume the statement is true for <em>n</em> = <em>k</em>, namely that <em>k</em> ² - <em>k</em> is even. This means that <em>k</em> ² - <em>k</em> = 2<em>m</em> for some integer <em>m</em>.
Induction step: show that the assumption implies (<em>k</em> + 1)² - (<em>k</em> + 1) is also even. We have
(<em>k</em> + 1)² - (<em>k</em> + 1) = <em>k</em> ² + 2<em>k</em> + 1 - <em>k</em> - 1
… = (<em>k</em> ² - <em>k</em>) + 2<em>k</em>
… = 2<em>m</em> + 2<em>k</em>
… = 2 (<em>m</em> + <em>k</em>)
which is clearly even. QED
Point-slope form is y - y1 = m(x - x1). We just need to plug in our stuff. This gives us y - 9 = 4(x - 3). I am not sure if you need to simplify, but if you do, y - 9 = 4x - 12.
X^2 = 9x + 6
x^2 - 9x - 6 = 0
use quadratic formula : (-b (+-) sqrt b^2 - 4ac) / (2a)
a = 1, b = -9, c = -6
now we sub
x = (-(-9) (+-) sqrt -9^2 - 4(1)(-6)) / 2(1)
x = 9 (+-) sqrt 81 + 24)/2
x = 9 (+-) sqrt 105) / 2
x = 9/2 + 1/2 sqrt 105 or x = 9/2 - 1/2 sqrt 105