<span>binomial </span>is an algebraic expression containing 2 terms. For example, (x + y) is a binomial.
We sometimes need to expand binomials as follows:
(a + b)0 = 1
(a + b)1 = a + b
(a + b)2 = a2 + 2ab + b2
(a + b)3 = a3 + 3a2b + 3ab2 + b3
<span>(a + b)4</span> <span>= a4 + 4a3b</span><span> + 6a2b2 + 4ab3 + b4</span>
<span>(a + b)5</span> <span>= a5 + 5a4b</span> <span>+ 10a3b2</span><span> + 10a2b3 + 5ab4 + b5</span>
Clearly, doing this by direct multiplication gets quite tedious and can be rather difficult for larger powers or more complicated expressions.
Pascal's Triangle
We note that the coefficients (the numbers in front of each term) follow a pattern. [This was noticed long before Pascal, by the Chinese.]
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
You can use this pattern to form the coefficients, rather than multiply everything out as we did above.
The Binomial Theorem
We use the binomial theorem to help us expand binomials to any given power without direct multiplication. As we have seen, multiplication can be time-consuming or even not possible in some cases.
<span>Properties of the Binomial Expansion <span>(a + b)n</span></span><span><span>There are <span>\displaystyle{n}+{1}<span>n+1</span></span> terms.</span><span>The first term is <span>an</span> and the final term is <span>bn</span>.</span></span><span>Progressing from the first term to the last, the exponent of a decreases by <span>\displaystyle{1}1</span> from term to term while the exponent of b increases by <span>\displaystyle{1}1</span>. In addition, the sum of the exponents of a and b in each term is n.</span><span>If the coefficient of each term is multiplied by the exponent of a in that term, and the product is divided by the number of that term, we obtain the coefficient of the next term.</span>
Answer: x = $7, y = $6
Step-by-step explanation:
Let x be the cost of an adult ticket
Let y be the cost of a children's ticket
Translate these sentences to algebra:
At the circus, three adult tickets and five child tickets cost $51: 3x + 5y = 51
Five adult tickets and two child tickets cost $47: 5x + 2y = 47
Now we have two equations. Let's use substitution to solve.
3x + 5y = 51
3x = 51 - 5y
.: x = 17 - 5y/3
Now substitute this value of x into the second equation to find the numerical value of y:
5(17 - 5y/3) + 2y = 47
85 - 25y/3 + 2y = 47
-19y/3 = -38
-19y = -114
.: y = 6
Now find x:
x = 17 - 5y/3
x = 17 - 10
.: x = 7
So an adult ticket costs $7, and a child ticket costs $6 :)
Answer: the vertex would be (4,-25)
Step-by-step explanation:
id suggest using desmos. its an app/website and is super helpful.
Answer:
i think its number 2 hope its correct