1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GarryVolchara [31]
3 years ago
13

|m| greater than or equal to 10

Mathematics
1 answer:
saul85 [17]3 years ago
5 0
M is less than or equal to -10 or greater than or equal to 10
You might be interested in
Please help! Will give brainly, 50 points!! I'm stuck with this question and I don't get it!
pishuonlain [190]

Answer: The answer is x^2 + 4x - 3

Step-by-step explanation:

You just combine like terms, the only ones that can combine is the 6x and -4x. You just subtract them to get the answer of x^2 + 4x - 3.

7 0
3 years ago
Read 2 more answers
99 POINT QUESTION, PLUS BRAINLIEST!!!
VladimirAG [237]
First, we have to convert our function (of x) into a function of y (we revolve the curve around the y-axis). So:


y=100-x^2\\\\x^2=100-y\qquad\bold{(1)}\\\\\boxed{x=\sqrt{100-y}}\qquad\bold{(2)} \\\\\\0\leq x\leq10\\\\y=100-0^2=100\qquad\wedge\qquad y=100-10^2=100-100=0\\\\\boxed{0\leq y\leq100}

And the derivative of x:

x'=\left(\sqrt{100-y}\right)'=\Big((100-y)^\frac{1}{2}\Big)'=\dfrac{1}{2}(100-y)^{-\frac{1}{2}}\cdot(100-y)'=\\\\\\=\dfrac{1}{2\sqrt{100-y}}\cdot(-1)=\boxed{-\dfrac{1}{2\sqrt{100-y}}}\qquad\bold{(3)}

Now, we can calculate the area of the surface:

A=2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\left(-\dfrac{1}{2\sqrt{100-y}}\right)^2}\,\,dy=\\\\\\= 2\pi\int\limits_0^{100}\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=(\star)

We could calculate this integral (not very hard, but long), or use (1), (2) and (3) to get:

(\star)=2\pi\int\limits_0^{100}1\cdot\sqrt{100-y}\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\left|\begin{array}{c}1=\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\end{array}\right|= \\\\\\= 2\pi\int\limits_0^{100}\dfrac{-2\sqrt{100-y}}{-2\sqrt{100-y}}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\,\,dy=\\\\\\ 2\pi\int\limits_0^{100}-2\sqrt{100-y}\cdot\sqrt{100-y}\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\dfrac{dy}{-2\sqrt{100-y}}=\\\\\\

=2\pi\int\limits_0^{100}-2\big(100-y\big)\cdot\sqrt{1+\dfrac{1}{4(100-y)}}\cdot\left(-\dfrac{1}{2\sqrt{100-y}}\, dy\right)\stackrel{\bold{(1)}\bold{(2)}\bold{(3)}}{=}\\\\\\= \left|\begin{array}{c}x=\sqrt{100-y}\\\\x^2=100-y\\\\dx=-\dfrac{1}{2\sqrt{100-y}}\, \,dy\\\\a=0\implies a'=\sqrt{100-0}=10\\\\b=100\implies b'=\sqrt{100-100}=0\end{array}\right|=\\\\\\= 2\pi\int\limits_{10}^0-2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=(\text{swap limits})=\\\\\\

=2\pi\int\limits_0^{10}2x^2\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4}\cdot\sqrt{1+\dfrac{1}{4x^2}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^4}{4x^2}}\,\,dx= 4\pi\int\limits_0^{10}\sqrt{x^4+\dfrac{x^2}{4}}\,\,dx=\\\\\\= 4\pi\int\limits_0^{10}\sqrt{\dfrac{x^2}{4}\left(4x^2+1\right)}\,\,dx= 4\pi\int\limits_0^{10}\dfrac{x}{2}\sqrt{4x^2+1}\,\,dx=\\\\\\=\boxed{2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx}

Calculate indefinite integral:

\int x\sqrt{4x^2+1}\,dx=\int\sqrt{4x^2+1}\cdot x\,dx=\left|\begin{array}{c}t=4x^2+1\\\\dt=8x\,dx\\\\\dfrac{dt}{8}=x\,dx\end{array}\right|=\int\sqrt{t}\cdot\dfrac{dt}{8}=\\\\\\=\dfrac{1}{8}\int t^\frac{1}{2}\,dt=\dfrac{1}{8}\cdot\dfrac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}=\dfrac{1}{8}\cdot\dfrac{t^\frac{3}{2}}{\frac{3}{2}}=\dfrac{2}{8\cdot3}\cdot t^\frac{3}{2}=\boxed{\dfrac{1}{12}\left(4x^2+1\right)^\frac{3}{2}}

And the area:

A=2\pi\int\limits_0^{10}x\sqrt{4x^2+1}\,dx=2\pi\cdot\dfrac{1}{12}\bigg[\left(4x^2+1\right)^\frac{3}{2}\bigg]_0^{10}=\\\\\\= \dfrac{\pi}{6}\left[\big(4\cdot10^2+1\big)^\frac{3}{2}-\big(4\cdot0^2+1\big)^\frac{3}{2}\right]=\dfrac{\pi}{6}\Big(\big401^\frac{3}{2}-1^\frac{3}{2}\Big)=\boxed{\dfrac{401^\frac{3}{2}-1}{6}\pi}

Answer D.
6 0
3 years ago
Read 2 more answers
HELP ME PLZ Between 9 P.M. and 6:20 A.M.​, the water level in a swimming pool decreased by 7/12 . Assuming that the water level
ivann1987 [24]

Answer:

0.06245

Step-by-step explanation:

Decrease 7/12=0.583

from 9 p.m to 6:20 am is 9:20= (9+20/60) = 9.33 hours

0.583/9.33 = 0.06248

round the 0.06248 to 0.06245

3 0
3 years ago
It doesn't matter which of the two points on a line you choose to call (x1, y1) and which you choose to call (x2, y2) to calcula
frosja888 [35]
The correct answer is true ~ Apex 
3 0
3 years ago
Read 2 more answers
A)<br> 4x -1<br> =X+7<br> 2<br> b) 3x +2=<br> 2x +13<br> 3<br> +<br> I<br> +
horsena [70]

Answer:

a is x=7.5 b is x=1

Step-by-step explanation:

:))))))))

3 0
3 years ago
Other questions:
  • 2/3 k =28•4/9 solve for k
    5·2 answers
  • Rachel used 4.5 cups of apple juice in fruit punch that serves 12. Andy used 4.75 in his that serves 10. How much more apple jui
    7·1 answer
  • Find each product or quotient. Use significant digits. 1,370 m 31.7 s
    14·1 answer
  • You roll a 4-sided die repeatedly. On your odd-numbered rolls (1st,3rd,5th, etc.) you are victorious if you get a 4. On your eve
    5·1 answer
  • If 6 people want to share a 30 pound bag of beans equally by weight how many pounds of beans should each person get? Between wha
    7·1 answer
  • What is the circumference of a circle with a diameter of 6 feet? Use 3.14 for pie.
    13·2 answers
  • PLEASE ANSWER QUICKLY!!!!
    8·1 answer
  • -4(1+10a)-7&gt;-10(1+4a)-1
    11·2 answers
  • The function m(w) = –25w + 2500 models the amount of money in a safe, in dollars, w weeks after Lori learned the combination to
    13·1 answer
  • Help please
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!