Complete Question
A milling process has an upper specification of 1.68 millimeters and a lower specification of 1.52 millimeters. A sample of parts had a mean of 1.6 millimeters with a standard deviation of 0.03 millimeters. what standard deviation will be needed to achieve a process capability index f 2.0?
Answer:
The value required is
Step-by-step explanation:
From the question we are told that
The upper specification is 
The lower specification is
The sample mean is
The standard deviation is 
Generally the capability index in mathematically represented as
![Cpk = min[ \frac{USL - \mu }{ 3 * \sigma } , \frac{\mu - LSL }{ 3 * \sigma } ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7BUSL%20-%20%20%5Cmu%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%20%2C%20%20%5Cfrac%7B%5Cmu%20-%20LSL%20%7D%7B%203%20%2A%20%20%5Csigma%20%7D%20%5D)
Now what min means is that the value of CPk is the minimum between the value is the bracket
substituting value given in the question
![Cpk = min[ \frac{1.68 - 1.6 }{ 3 * 0.03 } , \frac{1.60 - 1.52 }{ 3 * 0.03} ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%20%5Cfrac%7B1.68%20-%20%201.6%20%7D%7B%203%20%2A%20%200.03%20%7D%20%20%2C%20%20%5Cfrac%7B1.60%20-%20%201.52%20%7D%7B%203%20%2A%20%200.03%7D%20%5D)
=> ![Cpk = min[ 0.88 , 0.88 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%200.88%20%2C%200.88%20%20%5D)
So

Now from the question we are asked to evaluated the value of standard deviation that will produce a capability index of 2
Now let assuming that

So

=> 
=> 
So

=> 
Hence
![Cpk = min[ 2, 2 ]](https://tex.z-dn.net/?f=Cpk%20%20%3D%20%20min%5B%202%2C%202%20%5D)
So

So
is the value of standard deviation required
X^2 = 8^2 + 5^2
x^2 = 64 + 25
x^2 = 89
x =
<span>
<span>
<span>
9.4339811321
</span>
</span>
</span>
Answer:
The correct answer B) The volumes are equal.
Step-by-step explanation:
The area of a disk of revolution at any x about the x- axis is πy² where y=2x. If we integrate this area on the given range of values of x from x=0 to x=1 , we will get the volume of revolution about the x-axis, which here equals,

which when evaluated gives 4pi/3.
Now we have to calculate the volume of revolution about the y-axis. For that we have to first see by drawing the diagram that the area of the CD like disk centered about the y-axis for any y, as we rotate the triangular area given in the question would be pi - pi*x². if we integrate this area over the range of value of y that is from y=0 to y=2 , we will obtain the volume of revolution about the y-axis, which is given by,

If we just evaluate the integral as usual we will get 4pi/3 again(In the second step i have just replaced x with y/2 as given by the equation of the line), which is the same answer we got for the volume of revolution about the x-axis. Which means that the answer B) is correct.
IN A triangle, sum of all angles = 180 degrees
2x + 3 + 4x+2 + 2x -1 = 180
8x +4 = 180
8x = 176
x = 176 /8 = 22 degrees
the angles are A = 2(22)+3 = 44+3 = 47 DEGREES
B = 4(22)+2 = 88 + 2 = 90 DEGREES
C = 2(22) -1 44-1 = 43 DEGREES
Gcf first
21y(y+5)
solutions are 0,-5