Ox:vₓ=v₀
x=v₀t
Oy:y=h-gt²/2
|vy|=gt
tgα=|vy|/vₓ=gt/v₀=>t=v₀tgα/g
y=0=>h=gt²/2=v₀²tg²α/2g=>tgα=√(2gh/v₀²)=√(2*10*20/24²)=√(400/576)=0.83=>α=tg⁻¹0.83=39°
cosα=vₓ/v=v₀/v=>v=v₀/cosα=24/cos39°=24/0,77=31.16 m/s
Ec=mv²/2=2*31.16²/2=971.47 J=>Ec≈0.97 kJ
Answer:

Explanation:
As we know that moment of force is given as

now we have


now from above formula we have

here we know that

so we have


One is bigger than the other and they are the same shape
Explanation:
'What is the magnitude of the force needed to stop the horses and bring the box into equilibrium?' ≈42N; according to the vectors rules.
'Where would you locate the rope to apply the force?' - in point D.
PS. zoom out the attached picture.
Answer: Option (c) is the correct answer.
Explanation:
Vapor pressure is defined as the pressure exerted by vapors or gas on the surface of a liquid.
When we increase the temperature of a liquid substance then there will occur an increase kinetic energy of the molecules. As a result, they will move readily from one place to another.
Hence, liquid state of a substance will change into vapor state of the substance. This means that an increase in temperature will lead to an increase in vapor pressure of the substance.
Thus, we can conclude that you can increase the vapor pressure of a liquid by increasing temperature.