Answer:
The mass of the object is 5.045 lbm.
Explanation:
Given;
kinetic energy of the object, K.E = 1558.71 ft.lbf
velocity of the object, V = 141 ft/s
The kinetic energy of the object is calculated as;


Therefore, the mass of the object is 5.045 lbm.
Answer:
a) Linear equation
Explanation:
Definition of acceleration

if a=constant and we integrate the last equation

So the relation between the time and the velocity is linear. If we plot the velocity in function of time, the plot is a line, and the acceleration is the slope of this line.
The blue star is the hottest star.
Fun Fact: The coldest stars are red
Answer:
a) I = 2279.5 N s
, b) F = 3.80 10⁵ N, c) I = 3125.5 N s and d) F = 5.21 10⁵ N
Explanation:
The impulse is equal to the variation in the amount of movement.
I =∫ F dt = Δp
I = m
- m v₀
Let's calculate the final speed using kinematics, as the cable breaks the initial speed is zero
² = V₀² - 2g y
² = 0 - 2 9.8 30.0
= √588
= 24.25 m/s
a) We calculate the impulse
I = 94 24.25 - 0
I = 2279.5 N s
b) Let's join the other expression of the impulse to calculate the average force
I = F t
F = I / t
F = 2279.5 / 6 10⁻³
F = 3.80 10⁵ N
just before the crash the passenger jumps up with v = 8 m / s, let's take the moments of interest just when the elevator arrives with a speed of 24.25m/s down and as an end point the jump up to vf = 8 m / n
c) I = m
- m v₀
I = 94 8 - 94 (-24.25)
I = 3125.5 N s
d) F = I / t
F = 3125.5 / 6 10⁻³
F = 5.21 10⁵ N
Answer:
a = 0.01m/s²
Explanation:
V_f = V_0+a*t
V_f = Velocity final
V_0 = Velocity initial
a = acceleration
t = time
a = (V_f-V_0)/t
a = (540m/s-240m/s)/((8hr)*(60min/1hr)*(60s/1min))
a = 0.01m/s²