1st month +450
-60 x 4 months = -240
6th month + 125
Total: 450 - 240 + 125 = $335 profit
Answer: d. 50
Steps:
1. Find value of x.
5x + 4x = 90
9x = 90
x = 10
2. Use x value to find ∠EDH.
∠EDH = 5x
∠EDH = 5(10)
∠EDH = 50°
It’s -7/2
If it’s wrong I’ll correct it in the comments
Complete question is;
A model for a company's revenue from selling a software package is R = -2.5p² + 500p, where p is the price in dollars of the software. What price will maximize revenue? Find the maximum revenue.
Answer:
Price to maximize revenue = $100
Maximum revenue = $25000
Step-by-step explanation:
We are told that:
R = -2.5p² + 500p, where p is the price in dollars of the software.
The maximum revenue will occur at the vertex of the parabola.
Thus, the price at this vertex is;
p = -b/2a
Where a = - 2.5 and b = 500
Thus:
p = -500/(2 × -2.5)
p = -500/-5
p = 100 in dollars
Maximum revenue at this price is;
R(100) = -2.5(100)² + 500(100)
R(100) = -25000 + 50000
R(100) = $25000