1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tamaranim1 [39]
3 years ago
13

A computer downloads files at a constant rate. The table shows how many megabytes the computer downloads over specific lengths o

f time. What is the slope of the line that represents the computer downloads? Computer Downloads Minutes 3 5 7 9 Megabytes 11.25 18.75 26.25 33.75
Mathematics
1 answer:
PolarNik [594]3 years ago
5 0
The slope of the line would be 3.75.
You might be interested in
an auto repair shop charges $25 an hour they say your muffler needs to be replaced for $65 it takes them 2.5 hours to fix your c
Levart [38]

Answer: $130.50

Step-by-step explanation:

2.5 hours= $25 an hour

25+25+12.50=$62.50

Muffler=$65

65plus62.50

Total= $130.50

5 0
3 years ago
30000mm how much did it grow in a meter
Serggg [28]
30000mm÷10=3000cm
3000cm÷100=30m
Answer: 30m
7 0
3 years ago
Use undetermined coefficient to determine the solution of:y"-3y'+2y=2x+ex+2xex+4e3x​
Kitty [74]

First check the characteristic solution: the characteristic equation for this DE is

<em>r</em> ² - 3<em>r</em> + 2 = (<em>r</em> - 2) (<em>r</em> - 1) = 0

with roots <em>r</em> = 2 and <em>r</em> = 1, so the characteristic solution is

<em>y</em> (char.) = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>)

For the <em>ansatz</em> particular solution, we might first try

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> + <em>d</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

where <em>ax</em> + <em>b</em> corresponds to the 2<em>x</em> term on the right side, (<em>cx</em> + <em>d</em>) exp(<em>x</em>) corresponds to (1 + 2<em>x</em>) exp(<em>x</em>), and <em>e</em> exp(3<em>x</em>) corresponds to 4 exp(3<em>x</em>).

However, exp(<em>x</em>) is already accounted for in the characteristic solution, we multiply the second group by <em>x</em> :

<em>y</em> (part.) = (<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)

Now take the derivatives of <em>y</em> (part.), substitute them into the DE, and solve for the coefficients.

<em>y'</em> (part.) = <em>a</em> + (2<em>cx</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

… = <em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)

<em>y''</em> (part.) = (2<em>cx</em> + 2<em>c</em> + <em>d</em>) exp(<em>x</em>) + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… = (<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

Substituting every relevant expression and simplifying reduces the equation to

(<em>cx</em> ² + (4<em>c</em> + <em>d</em>)<em>x</em> + 2<em>c</em> + 2<em>d</em>) exp(<em>x</em>) + 9<em>e</em> exp(3<em>x</em>)

… - 3 [<em>a</em> + (<em>cx</em> ² + (2<em>c</em> + <em>d</em>)<em>x</em> + <em>d</em>) exp(<em>x</em>) + 3<em>e</em> exp(3<em>x</em>)]

… +2 [(<em>ax</em> + <em>b</em>) + (<em>cx</em> ² + <em>dx</em>) exp(<em>x</em>) + <em>e</em> exp(3<em>x</em>)]

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

… … …

2<em>ax</em> - 3<em>a</em> + 2<em>b</em> + (-2<em>cx</em> + 2<em>c</em> - <em>d</em>) exp(<em>x</em>) + 2<em>e</em> exp(3<em>x</em>)

= 2<em>x</em> + (1 + 2<em>x</em>) exp(<em>x</em>) + 4 exp(3<em>x</em>)

Then, equating coefficients of corresponding terms on both sides, we have the system of equations,

<em>x</em> : 2<em>a</em> = 2

1 : -3<em>a</em> + 2<em>b</em> = 0

exp(<em>x</em>) : 2<em>c</em> - <em>d</em> = 1

<em>x</em> exp(<em>x</em>) : -2<em>c</em> = 2

exp(3<em>x</em>) : 2<em>e</em> = 4

Solving the system gives

<em>a</em> = 1, <em>b</em> = 3/2, <em>c</em> = -1, <em>d</em> = -3, <em>e</em> = 2

Then the general solution to the DE is

<em>y(x)</em> = <em>C₁</em> exp(2<em>x</em>) + <em>C₂</em> exp(<em>x</em>) + <em>x</em> + 3/2 - (<em>x</em> ² + 3<em>x</em>) exp(<em>x</em>) + 2 exp(3<em>x</em>)

4 0
3 years ago
Complete the solution of the equation. Find the value of y when x equals 8. 4x+9y=-14
Shtirlitz [24]

Y=-5.11111 how I solved it is in the picture attached

5 0
3 years ago
Jacob had a cube. When Jacob made a cross section parallel to the base, what shape did the cross section form? trapezoid square
vivado [14]

Answer: Square

Step-by-step explanation:

A cross section cut parallel to a base will be the same shape as the base itself, and the base of a cube is a square. :)

4 0
2 years ago
Other questions:
  • Please help me ASAP<br> Thanks
    7·2 answers
  • What is x= 2.3 if you evaluate 8x for the value?
    8·2 answers
  • Select the number line that correctly shows the calculation for |−3|.
    10·2 answers
  • The cost of all cell phone bill (C) increases when the number of text messages (T) increases. Write the correct equation for thi
    7·1 answer
  • In a cafeteria, 1\6 of the students are eating salads , and 2\3 are eating sandwiches. There are 18 students in the cafeteria. H
    12·1 answer
  • Bernice spent $22.08 for mints. The mints cost $0.96/lb. How many pounds of mints did she buy? Enter your answer in the box.
    8·2 answers
  • Please write the slope-intercept form for this: A line goes through the points (5,18) and (-3,-14)
    9·1 answer
  • Help with graph pleaseeeeb​
    5·1 answer
  • Help me please this is due tonight! ​
    11·2 answers
  • 05* Find, for y&gt; 0, the general solution of the differential equation dy/dx=xy.
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!