441 g CaCO₃ would have to be decomposed to produce 247 g of CaO
<h3>Further explanation</h3>
Reaction
Decomposition of CaCO₃
CaCO₃ ⇒ CaO + CO₂
mass CaO = 247 g
mol of CaO(MW=56 g/mol) :

From equation, mol ratio CaCO₃ : CaO = 1 : 1, so mol CaO :

mass CaCO₃(MW=100 g/mol) :

Answer:
Physical Properties
Explanation:
You are able to see physical properties but are unable to see chemical properties.
Answer:
French physicist Jacques Charles (1746-1823) studied the effect of temperature on the volume of a gas at constant pressure. Charles's Law states that the volume of a given mass of gas varies directly with the absolute temperature of the gas when pressure is kept constant. The absolute temperature is temperature measured with the Kelvin scale. The Kelvin scale must be used because zero on the Kelvin scale corresponds to a complete stop of molecular motion.
alt
Figure 11.5.1: As a container of confined gas is heated, its molecules increase in kinetic energy and push the movable piston outward, resulting in an increase in volume.
Mathematically, the direct relationship of Charles's Law can be represented by the following equation:
V
T
=k
As with Boyle's Law, k is constant only for a given gas sample. The table below shows temperature and volume data for a set amount of gas at a constant pressure. The third column is the constant for this particular data set and is always equal to the volume divided by the Kelvin temperature.
Explanation:
PLEASS MARK ME AS BRAINLIEST ANSWER
Answer:
Kp = 0.022
Explanation:
<em>Full question: ...With 2.3 atm of ammonia gas at 32. °C. He then raises the temperature, and when the mixture has come to equilibrium measures the partial pressure of hydrogen gas to be 0.69 atm. </em>
<em />
The equilibrium of ammonia occurs as follows:
2NH₃(g) ⇄ N₂(g) + 3H₂(g)
Where Kp is defined as:

<em>Where P represents partial pressure of each gas.</em>
<em />
As initial pressure of ammonia is 2.3atm, its equilibrium concentration will be:
P(NH₃) = 2.3atm - 2X
<em>Where X represents reaction coordinate</em>
<em />
Thus, pressure of hydrogen and nitrogen is:
P(N₂) = X
P(H₂) = 3X.
As partial pressure of hydrogen is 0.69atm:
3X = 0.69
X = 0.23atm:
P(NH₃) = 2.3atm - 2(0.23atm) = 1.84atm
P(N₂) = 0.23atm
P(H₂) = 0.69atm

<h3>Kp = 0.022</h3>