Answer:
false. acids do not neutralize bases.
Explanation:
Answer:
carbon dioxide
Explanation:
Carbon burns in oxygen to form carbon dioxide. Since hydrocarbon fuels only contain two elements, we always obtain the same two products when they burn. In the equation below methane (CH 4) is being burned. The oxygen will combine with the carbon and the hydrogen in the methane molecule to produce carbon dioxide (CO 2) and water (H 2O).
Carbon, as graphite, burns to form gaseous carbon (IV) oxide (carbon dioxide), CO2. ... When the air or oxygen supply is restricted, incomplete combustion to carbon monoxide, CO, occurs. 2C(s) + O2(g) → 2CO(g) This reaction is important. When one mole of carbon is exposed to some energy in the presence of one mole of oxygen gas, one mole of carbon dioxide gas is produced. This reaction is a combustion reaction.
A physical change is any change in a substances form that does not change its chemical makeup. Examples of physical changes are breaking a stick or melting ice. A chemical change occurs when atoms of a substance are rearranged, and the bonds between the atoms are broken or formed. HOPE THIS HELPS!!
Apples turn brown when exposed to air because it undergoes aerial oxidation. Due to this, when the inside of the apple is exposed to the air containing oxygen and water, it turns brown. When apple is uncut, skin of the apple protects it from this process.
If the peeled apple in kept in the refrigerator, the oxidation reaction is greatly slowed down. This is because, rate of chemical reaction decreases with temperature. Hence, in refrigerator it would take several days for it to turn brown.
The reaction of iron (III) oxide and aluminum is initiated by heat released from a small amount "starter mixture". This reaction is an oxidation-reduction reaction, a single replacement reaction, producing great quantities of heat (flame and sparks) and a stream of molten iron and aluminum oxide which pours out of a hole in the bottom of the pot into sand.
The balanced chemical equation for this reaction is:
2 Al(s) + Fe2O3(s) --> 2Fe(s) + Al2O3(s) + 850 kJ/mol
Curriculum Notes
This chemical reaction can be used to demonstrate an exothermic reaction, a single replacement or oxidation-reduction reaction, and the connection between ∆H calculated for this reaction using heats of formation and Hess' Law and calculating ∆H for this reaction using qrxn = mc∆T and the moles of limiting reactant. This reaction also illustrates the role of activation energy in a chemical reaction. The thermite mixture must be raised to a high temperature before it will react.
To determine how much thermal energy is released in this reaction, heats of formation values and Hess' Law can be used.
By definition, the deltaHfo of an element in its standard state is zero.
2 Al(s) + Fe2O3(s) --> 2Fe (s) + Al2O3 (s)
The deltaH for this reaction is the sum of the deltaHfo's of the products - the sum of the deltaHfo's of the reactants (multiplying each by their stoichiometric coefficient in the balanced reaction equation), i.e.:
deltaHorxn = (1 mol)(deltaHfoAl2O3) + (2 mol)(deltaHfoFe) - (1 mol)(deltaHfoFe2O3) - (2 mol)(deltaHfoAl)
deltaHorxn = (1 mol)(-1,669.8 kJ/mol) + (2 mol)(0) - (1 mol)(-822.2 kJ/mol) - (2mol)(0 kJ/mol)
deltaHorxn = -847.6 kJ
The melting point of iron is 1530°C (or 2790°F).
MARK ME BRAINLIEST