Let us formulate the independent equation that represents the problem. We let x be the cost for adult tickets and y be the cost for children tickets. All of the sales should equal to $20. Since each adult costs $4 and each child costs $2, the equation should be
4x + 2y = 20
There are two unknown but only one independent equation. We cannot solve an exact solution for this. One way to solve this is to state all the possibilities. Let's start by assigning values of x. The least value of x possible is 0. This is when no adults but only children bought the tickets.
When x=0,
4(0) + 2y = 20
y = 10
When x=1,
4(1) + 2y = 20
y = 8
When x=2,
4(2) + 2y = 20
y = 6
When x=3,
4(3) + 2y= 20
y = 4
When x = 4,
4(4) + 2y = 20
y = 2
When x = 5,
4(5) + 2y = 20
y = 0
When x = 6,
4(6) + 2y = 20
y = -2
A negative value for y is impossible. Therefore, the list of possible combination ends at x =5. To summarize, the combinations of adults and children tickets sold is tabulated below:
Number of adult tickets Number of children tickets
0 10
1 8
2 6
3 4
4 2
5 0
<h3>Answer:</h3>
- white : brown = 8 : 5
- black : total = 6 : 23
<h3>Explanation:</h3>
Each of the ratio components (white socks, brown socks, black socks, total socks) has an associated number (8, 5, 6, 23). Write the desired ratio using the associated numbers.
Answer:
120 cm
Step-by-step explanation:
One way to tackle this is by getting another sheet of paper and drawing it out, then counting up the total of the sides. If you draw it, you can see that you're dealing with a rectangle; two sides of length 12 and two sides of length 8. If you don't like drawing or don't want to in this case, another way to get the answer is by knowing one vertex is at (0, 0), so the next vertex (0, 8), would create a side that's exactly 8 units long. Kind of the same, you know from (0, 0), you also have a point (12, 0), so drawing that would create a side that's 12 units long. All in all, to get the perimeter in units, you have 12 + 12 + 8 + 8 = 40.
The problem says it wants the amount of wood in centimeters needed for the perimeter. What we just found was the perimeter in generic units, so if the problem says every "grid square", or unit, is 3 centimeters long, then all you have to do is take our result 40 and multiply it by 3 to get the number of centimeters. Your perimeter in centimeters would be 120 cm.
The answer is (((((A ))))))