<h2><u>Question</u><u>:</u><u>-</u></h2>
A fruitseller bought 50kg of the fruits. He sold 30kg of fruits for the cost price of 35kg of fruits and he sold the remaining quantity for the cost Price of 18kg of fruits. calculate his profit or loss percent in the total transaction.
<h2><u>Answer</u><u>:</u><u>-</u></h2>
let the cost price be 50x
→he sells 30kg of fruits on it's CP of 35 kg
→CP of 30kg fruits = 30x
→SP of 35kg fruits = 35x
→remaing fruits are 20kg
→he sells 20kg of fruits on CP of 16kg
→CP of 20kg fruits = 20x
→SP of 20kg fruits = 16x
→total CP is = 50x
→total SP is = (35 + 16) = 51x
→SP > CP (it means profit)
→profit = SP-CP
→ 51-50
→ 1
<h2 /><h2><u>Now,</u></h2>
→ Profit% = gain/CP × 100
→ Profit% = 1/50 × 100
→ 2%
Hence the fruit seller had a profit% of 2%.
Answer:
The equation of the line is y = (-1/2)x + 5
Step-by-step explanation:

First of all, have to find gradient using the formula above :
(2,4) & (14,-2)
m = (-2-4) / (14-2)
= -6 / 12
= -1/2
Second, using y = mx + b as b is a constant and is a y-intercept. Using any of these 2 coordinates to find the value of b with given gradient :
y = mx + b
Let y=4 & x=2
4 = (-1/2)(2) + b
b = 4 + 1
= 5
Lastly, put the value of gradient and y-intercept into the equation :
y = mx + b
Let m=-1/2 & b=5
y = (-1/2)x + 5
n+5=9 is the answer for this
I = / r where I = current and r = resistance
80 = k / 50 so
k = 400
so we have I = 400/r
when r = 40
I = 400/40 = 10 amps