At critical temperature, the resistivity of the superconductor
B. It suddenly drops to zero
Explanation:
Materials can be classified into three different types depending on their resistance:
- Conductors: these materials have generally low resistance and allow electricity to pass through easily. The resistance of a conductor increases linearly with the temperature
- Insulators: these materials do not allow electricity to pass through - so they have very high resistance
- Semi-conductors: these are materials that are insulators are room temperature, however they becomes conductors when heated. Therefore, the resistance of a semiconductor decreases when the temperature increases
- Superconductors: these are special materials that are normally conductors; however, at very low temperatures (we are talking about temperature very near to 0 K), their resistance becomes suddenly zero.
Therefore, the correct answer is:
B. It suddenly drops to zero
Learn more about current and resistance:
brainly.com/question/4438943
brainly.com/question/10597501
brainly.com/question/12246020
#LearnwithBrainly
Answer:
: carbon tetrabromide
Explanation:
is a covalent compound because in this compound the sharing of electrons takes place between carbon and bromine. Both the elements are non-metals. Hence, it will form covalent bond.
The naming of covalent compound is given by:
1. The less electronegative element is written first.
2. The more electronegative element is written second. Then a suffix is added with it. The suffix added is '-ide'.
3. If atoms of an element is greater than 1, then prefixes are added which are 'mono' for 1 atom, 'di' for 2 atoms, 'tri' for 3 atoms and so on.
Hence, the correct name for
is carbon tetrabromide.
Wavelength*frequency=velocity
(331m/s)/(.6m)
Frequency = 551.666 1/s
Answer:
Im not sure if this is right but here is the answer i think it is....So multiply 45 by 2.205 to get 99.225 pounds. Alternately, to convert from kg to Newtons, use the fact that 1 kg is 9.8 Newtons
Explanation:
Answer:
10989.55932 rad/s
Explanation:
m = Mass of object
M = Mass of neutron star = 
R = Radius of neutron star = 13000 m
G = Gravitational constant = 6.67 × 10⁻¹¹ m³/kgs²
= Angular speed
Here, the gravitational force will balance the centripetal force

The greatest possible angular speed an object can have is 10989.55932 rad/s