Answer:
The maximum mass the bar can support without yielding = 32408.26 kg
Explanation:
Yield stress of the material (
) = 200 M Pa
Diameter of the bar = 4.5 cm = 45 mm
We know that yield stress of the bar is given by the formula
Yield Stress = 
⇒
=
---------------- (1)
⇒ Area of the bar (A) =
×
⇒ A =
× 
⇒ A = 1589.625 
Put all the values in equation (1) we get
⇒
= 200 × 1589.625
⇒
= 317925 N
In this bar the
is equal to the weight of the bar.
⇒
=
× g
Where
is the maximum mass the bar can support.
⇒
= 
Put all the values in the above formula we get
⇒
= 
⇒
= 32408.26 Kg
There fore the maximum mass the bar can support without yielding = 32408.26 kg
<h3><u>Answer</u>;</h3>
≈ 5 Kgm²/sec
<h3><u>Explanation</u>;</h3>
Angular momentum is given by the formula
L = Iω, where I is the moment of inertia and ω is the angular speed.
I = mr², where m is the mass and r is the radius
= 0.65 × 0.7²
= 0.3185
Angular speed, ω = v/r
= (2 × 3.142 × r × 2.5) r
= 15.71
Therefore;
Angular momentum = Iω
= 0.3185 × 15.71
= 5.003635
<u>≈ 5 Kgm²/sec</u>
Answer:
Point a
Explanation:
The potential energy of an object is given by :
P = mgh
m is mass, g is acceleration due to gravity, h is height above ground level.
Potential energy is directly proportional to the position of an object.
In the attached figure, the maximum height is shown at point (a). It means it will have maximum potential energy at a as compared to b,c and d.
I think u should follow the formulae F=MA. So I think the answer is 120N
Answer:
93 km/h
Explanation:
Given that a bus took 8 hours to travel 639 km. For the first 5 hours, it travelled at an average speed of 72 km/h
Let the first 5 hours journey distance = F
From the formula of speed,
Speed = distance/time
Substitute speed and time
72 = F/5
F = 72 × 5 = 360 km
The remaining distance will be:
639 - 360 = 279km
The remaining time will be:
8 - 5 = 3 hours
Speed = 279/3
Speed = 93 km/h
Therefore, the average speed for the remaining time of the journey is equal to 93 km/h