Gravity is an attractive force that works to pull objects together. If 2 objects are close the gravitational pull will be stronger
Mass and distance determine gravity. The farther two things are away from each other, the weaker the gravitational forces are, the less mass an object has the less gravitational force it exerts
if a volume of air is warmed it expands due to increased translational kinetic energy as it expands it will start to cool.
<h3>When does temperature increase volume?</h3>
We can then conclude that at constant pressure, temperature and volume are directly proportional: temperature increases, volume increases; decrease temperature, decrease volume.
In this case, the higher the temperature, the greater the kinetic energy that acts on the molecules of this gas, so when the gas expands, these molecules find more space and collide less, which will cause the gas to cool.
See more about volume at brainly.com/question/1578538
#SPJ12
The distance an object falls from rest through gravity is
D = (1/2) (g) (t²)
Distance = (1/2 acceleration of gravity) x (square of the falling time)
We want to see how the time will be affected
if ' D ' doesn't change but ' g ' does.
So I'm going to start by rearranging the equation
to solve for ' t '.
D = (1/2) (g) (t²)
Multiply each side by 2 : 2 D = g t²
Divide each side by ' g ' : 2 D/g = t²
Square root each side: t = √ (2D/g)
Looking at the equation now, we can see what happens
to ' t ' when only ' g ' changes:
-- ' g ' is in the denominator; so bigger 'g' ==> shorter 't'
and smaller 'g' ==> longer 't' .
-- They don't change by the same factor, because 1/g is inside
the square root. So 't' changes the same amount as √1/g does.
Gravity on the surface of the moon is roughly 1/6 the value
of gravity on the surface of the Earth.
So we expect ' t ' to increase by √6 = 2.45 times.
It would take the same bottle (2.45 x 4.95) = 12.12 seconds
to roll off the same window sill and fall 120 meters down to the
surface of the Moon.
Acceleration is measured in m/s².
Answer: m/s²