Answer:
w = 10
Step-by-step explanation:
3w = 30
Divide each side by 3
3w/3 = 30/3
w = 10
Answer:
9
Step-by-step explanation:
second box is nine because it is half of the 3 x 6 part
To solve this, I would just find what two adult tickets and one child ticket wold be worth.
To find that, just do:
5.20 + 9.90 * 2, which makes 25.
So now you just find how many 25s are in 900, or 36.
So 36 children's tickets were sold that day.
Hope I helped :)
When finding the domain of a square root, you have to know that it is impossible to get the square root of 0 or any negative number. since domain is possible x values this means that x cannot be 0 or any number less than 0. However, you can find the square root of the smallest most infinitely small number greater than 0. since an infinitely small number close to zero can not be written out, we must must say that the domain starts at 0 exclusive. exclusive is represented by an open or close parenthesis so in this case the domain starts with:
(0,
we can get the square root of any number larger than 0 up to infinity but infinity can never be reached so it is also exclusive. So so the ending of our domain would be:
,infinity)
So the answer if the square root is only over the x the answer is
(0, infinity)
But if the square root is over the x- 5 then this would brIng a smaller amount of possible x values. since anything under the square root sign has to be greater than 0, you can say that:
(x - 5) > 0
x > 5
Therefore the domain would start at 5 and the answer would be:
(5, infinity)
Answer:

Step-by-step explanation:
The composite figure consists of a square prism and a trapezoidal prism. By adding the volume of each, we obtain the volume of the composite figure.
The volume of the square prism is given by
, where
is the base length and
is the height. Substituting given values, we have: 
The volume of a trapezoidal prism is given by
, where
and
are bases of the trapezoid,
is the length of the height of the trapezoid and
is the height. This may look very confusing, but to break it down, we're finding the area of the trapezoid (base) and multiplying it by the height. The area of a trapezoid is given by the average of the bases (
) multiplied by the trapezoid's height (
).
Substituting given values, we get:

Therefore, the total volume of the composite figure is
(ah, perfect)
Alternatively, we can break the figure into a larger square prism and a triangular prism to verify the same answer:
