Answer:
0.048 is the probability that more than 950 message arrive in one minute.
Step-by-step explanation:
We are given the following information in the question:
The number of messages arriving at a multiplexer is a Poisson random variable with mean 15 messages/second.
Let X be the number of messages arriving at a multiplexer.
Mean = 15
For poison distribution,
Mean = Variance = 15

From central limit theorem, we have:
where n is the sample size.
Here, n = 1 minute = 60 seconds
P(x > 950)
Calculation the value from standard normal z table, we have,

0.048 is the probability that more than 950 message arrive in one minute.
Answer:
10.95
Step-by-step explanation:
Answer:
C
Step-by-step explanation:
Unit rate means that the denominator of the units has to be 1: units have to be miles/1 hour
Thus divide miles by hours to get the unit rate. The answer would then be 7/2 miles/1 hour
Answer:
B) The maximum y-value of f(x) approaches 2
C) g(x) has the largest possible y-value
Step-by-step explanation:
f(x)=-5^x+2
f(x) is an exponential function.
Lim x→∞ f(x) = Lim x→∞ (-5^x+2) = -5^(∞)+2 = -∞+2→ Lim x→∞ f(x) = -∞
Lim x→ -∞ f(x) = Lim x→ -∞ (-5^x+2) = -5^(-∞)+2 = -1/5^∞+2 = -1/∞+2 = 0+2→
Lim x→ -∞ f(x) = 2
Then the maximun y-value of f(x) approaches 2
g(x)=-5x^2+2
g(x) is a quadratic function. The graph is a parabola
g(x)=ax^2+bx+c
a=-5<0, the parabola opens downward and has a maximum value at
x=-b/(2a)
b=0
c=2
x=-0/2(-5)
x=0/10
x=0
The maximum value is at x=0:
g(0)=-5(0)^2+2=-5(0)+2=0+2→g(0)=2
The maximum value of g(x) is 2
Answer:
£39.95
Step-by-step explanation:
multiply it by £7.99×5