Answer:
The answer is endothermic as the heat flows into the system from the surroundings. The products are at higher energy than the reactants, as they have absorbed energy.
You need to find moles of the gas, so you would use the ideal gas law:
PV=nRT
Pressure
Volume
n=moles
R= gas constant
Tenperature in Kelvin
n= PV/RT
(1.00atm)(1.35L)/(.08206)(332K) = 0.050mol
Molar mass is grams per mole, so
(3.75g/.050mol) = 75g/mol
Answer : The concentration of NOBr after 95 s is, 0.013 M
Explanation :
The integrated rate law equation for second order reaction follows:
![k=\frac{1}{t}\left (\frac{1}{[A]}-\frac{1}{[A]_o}\right)](https://tex.z-dn.net/?f=k%3D%5Cfrac%7B1%7D%7Bt%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%5BA%5D_o%7D%5Cright%29)
where,
k = rate constant =
t = time taken = 95 s
[A] = concentration of substance after time 't' = ?
= Initial concentration = 0.86 M
Now put all the given values in above equation, we get:
![0.80=\frac{1}{95}\left (\frac{1}{[A]}-\frac{1}{(0.86)}\right)](https://tex.z-dn.net/?f=0.80%3D%5Cfrac%7B1%7D%7B95%7D%5Cleft%20%28%5Cfrac%7B1%7D%7B%5BA%5D%7D-%5Cfrac%7B1%7D%7B%280.86%29%7D%5Cright%29)
[A] = 0.013 M
Hence, the concentration of NOBr after 95 s is, 0.013 M
Answer:
Germanium and Polonium
Explanation:
Can you please mark me brainliest since I was the first person to answer :p
Answer:
A. Reference blank
B. Cuvettes
C. Transmittance
D. Absorbance
E. Wavelength
Explanation:
A reference blank is a sample prepared using the solvent and any other chemicals in the sample solutions, but not the absorbing substance.
A square-shaped container, typically made of quartz, designed to hold samples in a spectrophotometer is known as Cuvettes.
A measurement of the amount of light that passes through a sample or percentage of light transmitted by the sample, with the respective intensities of the incident and transmitted beams is called Transmittance.
The measurement of the amount of light taken in by a sample is known as Absorbance
The wavelength is also the distance travelled by the wave during a period of oscillation. In spectrophotometry, the unit is inversely proportional to energy and commonly measured in nanometers