Answer:
Hot material near Earth's surface is more dense and sinks, and when it cools, it becomes less dense and rises.
Explanation:
Convection is a process by which less dense material rises and more dense material sinks near Earth's surface. Water, air, rocks and other materials expands when temperature rises and they become less dense. When the water is heated it becomes vapors and carries away thermal energy from the water.
Answer:
Kc = [CO2], that is to say it is equal to the concentration of CO2
Explanation:
It is a heterogeneous equilibrium since the substances that participate in the reaction are in different phases
In the heterogeneous limestone decomposition reaction:
CaCO3(s) --> CaO(s) + CO2(g)
The equilibrium constants are:
Kc = [CO2(g)]; Kp = PCO2(g); Kc = Kp (R T)^
−(1−0) = Kp (R T)^
−1
The equilibrium situation is not affected by the amount of solid or liquid, as long as these substances are present.
The equilibrium constant is independent of the amounts of solids and liquids in equilibrium.
10 because you divide 200 by 20
Answer:
For oxygen: mass % O = (mass of 1 mol of oxygen/mass of 1 mol of CO2) x 100. mass % O = (32.00 g / 44.01 g) x 100. mass % O = 72.71 %
Explanation:
NO, It Isn't
Ideally a population in Hardy Weinberg equilibrium should hold true to the following equation for genotypic frequencies of an allele;
P² + 2pq + q² = 1
Explanation:
We are provided with allelic frequencies hence we can derive the genotypic frequencies; (CR allele: p = 0.6 Frequency of the CW allele: q = 0.4)
P² = 0.6 ^2 = 0.36
2pq = 2 * 0.6 * 0.4 = 0.48
q² = 0.4 ^ 2 = 0.16
Lets find out if all add up to as supposed to;
0.36 + 0.48 + 0.16 = 1
Converting to percentages is easy – just multiply by 100
- 36 % CRCR
- 48% CRCW
- and 16 % CWCW
The population provided is not in equilibrium because their percentages vary widely to that the expected Hardy Weinberg's equilibrium percentages. This could be attributed to factors like;
- Migration
- Mutations,
- There is natural selection in progress in the population
- There is gene flow
Learn More:
For more on Hardy Weinberg's equilibrium check out;
brainly.com/question/9916141
#LearnWithBrainly