Answer:
The expression is 2.75P.
Step-by-step explanation:
If P represents the initial value and the value increases by 275%, then you can say that it is worth 2.75 times as much as the initial value.
Step-by-step explanation:
a. true
property: identity
b. false
property: communitive
c. true
associative
d. false
property: multiplication property of zero
PEMDAS
Parentheses, exponents, multiplication, division, addition, subtraction.
A.
![5x-4=-2(3x+2) \ \ \ \ \ \ \ \ \ |\hbox{expand the bracket} \\ 5x-4=-2 \times 3x-2 \times 2 \\ 5x-4=-6x-4 \ \ \ \ \ \ \ \ \ \ \ \ \ |\hbox{add 6x to both sides} \\ 11x-4=-4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\hbox{add 4 to both sides} \\ 11x=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |\hbox{divide both sides by 11} \\ x=0](https://tex.z-dn.net/?f=5x-4%3D-2%283x%2B2%29%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%5Chbox%7Bexpand%20the%20bracket%7D%20%5C%5C%0A5x-4%3D-2%20%5Ctimes%203x-2%20%5Ctimes%202%20%5C%5C%0A5x-4%3D-6x-4%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%5Chbox%7Badd%206x%20to%20both%20sides%7D%20%5C%5C%0A11x-4%3D-4%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%5Chbox%7Badd%204%20to%20both%20sides%7D%20%5C%5C%0A11x%3D0%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%5C%20%7C%5Chbox%7Bdivide%20both%20sides%20by%2011%7D%20%5C%5C%0Ax%3D0)
B.
![3(2x-4)=5x-1 \\ 6x-12=5x-1 \\ \boxed{11x-12=-1} \Leftarrow \hbox{the first mistake} \\ 11x=11 \\ \boxed{x=11} \Leftarrow \hbox{the second mistake}](https://tex.z-dn.net/?f=3%282x-4%29%3D5x-1%20%5C%5C%0A6x-12%3D5x-1%20%5C%5C%0A%5Cboxed%7B11x-12%3D-1%7D%20%5CLeftarrow%20%5Chbox%7Bthe%20first%20mistake%7D%20%5C%5C%0A11x%3D11%20%5C%5C%0A%5Cboxed%7Bx%3D11%7D%20%5CLeftarrow%20%5Chbox%7Bthe%20second%20mistake%7D)
Megan's solution isn't correct.
The first mistake: she subtracted 5x from the right-hand side of the equation, but added 5x to the left-hand side.
The second mistake: she divided the right-hand side of the equation by 11, but didn't divide the left-hand side.
The correct solution: