Answer:
Around 0.22
<u>FIRST THOUGH, I FEEL LIKE 90 MIGHT HAVE MEANT TO BEEN 0.9, SO IF SO SUBSTITUTE THE 90 BELOW FOR 0.9!</u>
<u></u>
Step-by-step explanation:
Okay, so first.
Company A will be 50 a day plus 0.4 a mile
Company B will be 30 a day plus 90 per mile
We can write an equation like this:
50 + 0.4m = 30 + 90m
m = miles they are the same
Then we solve for m.
50 + 0.4m = 30 + 90m
- 0.4m - 0.4m
50 = 30 + 89.6m
- 30 - 30
20 = 89.6m
Divide both sides by 89.6
Around 0.22!
I got 18 for this one............
Answer:
T == R + NH
Step-by-step explanation:
The fixed rate R is added to the hourly charges to get the total T. The hourly charges are the product of the number of hours and the charge per hour, NH.
The sum is then ...
... T = R + NH
Let's assign variables
The time required to <span>wire a building: y
</span>
The number of electricians <span>to have done this job: x
</span>
<span>y varies inversely as x
so that:

where k is the proportional constant
To calculate the value of k, plug in the values of x and y:
x=7
y=4

Now, write down the relation between x and y:

"</span><span>how long would it have taken 3 electricians to have done the job?"
x=3
Let's find out y:

So it would take 9 hours and 20 minutes to have this job done.
</span><span />
Answer:
(a) The probability of the event (<em>X</em> > 84) is 0.007.
(b) The probability of the event (<em>X</em> < 64) is 0.483.
Step-by-step explanation:
The random variable <em>X</em> follows a Poisson distribution with parameter <em>λ</em> = 64.
The probability mass function of a Poisson distribution is:

(a)
Compute the probability of the event (<em>X</em> > 84) as follows:
P (X > 84) = 1 - P (X ≤ 84)
![=1-\sum _{x=0}^{x=84}\frac{e^{-64}(64)^{x}}{x!}\\=1-[e^{-64}\sum _{x=0}^{x=84}\frac{(64)^{x}}{x!}]\\=1-[e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{84}}{84!}]]\\=1-0.99308\\=0.00692\\\approx0.007](https://tex.z-dn.net/?f=%3D1-%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3D1-%5Be%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D84%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5D%5C%5C%3D1-%5Be%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B84%7D%7D%7B84%21%7D%5D%5D%5C%5C%3D1-0.99308%5C%5C%3D0.00692%5C%5C%5Capprox0.007)
Thus, the probability of the event (<em>X</em> > 84) is 0.007.
(b)
Compute the probability of the event (<em>X</em> < 64) as follows:
P (X < 64) = P (X = 0) + P (X = 1) + P (X = 2) + ... + P (X = 63)
![=\sum _{x=0}^{x=63}\frac{e^{-64}(64)^{x}}{x!}\\=e^{-64}\sum _{x=0}^{x=63}\frac{(64)^{x}}{x!}\\=e^{-64}[\frac{(64)^{0}}{0!}+\frac{(64)^{1}}{1!}+\frac{(64)^{2}}{2!}+...+\frac{(64)^{63}}{63!}]\\=0.48338\\\approx0.483](https://tex.z-dn.net/?f=%3D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7Be%5E%7B-64%7D%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5Csum%20_%7Bx%3D0%7D%5E%7Bx%3D63%7D%5Cfrac%7B%2864%29%5E%7Bx%7D%7D%7Bx%21%7D%5C%5C%3De%5E%7B-64%7D%5B%5Cfrac%7B%2864%29%5E%7B0%7D%7D%7B0%21%7D%2B%5Cfrac%7B%2864%29%5E%7B1%7D%7D%7B1%21%7D%2B%5Cfrac%7B%2864%29%5E%7B2%7D%7D%7B2%21%7D%2B...%2B%5Cfrac%7B%2864%29%5E%7B63%7D%7D%7B63%21%7D%5D%5C%5C%3D0.48338%5C%5C%5Capprox0.483)
Thus, the probability of the event (<em>X</em> < 64) is 0.483.