Answer:
largest lead = 3 m
Explanation:
Basically, this problem is about what is the largest possible distance anchorman for team B can have over the anchorman for team A when the final leg started that anchorman for team A won the race. This show that anchorman for team A must have higher velocity than anchorman for team B to won the race as at the starting of final leg team B runner leads the team A runner.
So, first we need to calculate the velocities of both the anchorman
given data:
Distance = d = 100 m
Time arrival for A = 9.8 s
Time arrival for B = 10.1 s
Velocity of anchorman A = D / Time arrival for A
=100/ 9.8 = 10.2 m/s
Velocity of anchorman B = D / Time arrival for B
=100/10.1 = 9.9 m/s
As speed of anchorman A is greater than anchorman B. So, anchorman A complete the race first than anchorman B. So, anchorman B covered lower distance than anchorman A. So to calculate the covered distance during time 9.8 s for B runner, we use
d = vt
= 9.9 x 9.8 = 97 m
So, during the same time interval, anchorman A covered 100 m distance which is greater than anchorman B distance which is 97 m.
largest lead = 100 - 97 = 3 m
So if his lead no more than 3 m anchorman A win the race.
Explanation:
Here is the complete question i guess. The jet plane travels along the vertical parabolic path defined by y = 0.4x². when it is at point A it has speed of 200 m/s, which is increasing at the rate .8 m/s^2. Determine the magnitude of acceleration of the plane when it is at point A.
→ The tangential component of acceleration is rate of increase in the speed of plane so,

→ Now we have to find out the radius of curvature at point A which is 5 Km (from the figure).
dy/dx = d(0.4x²)/dx
= 0.8x
Take the derivative again,
d²y/dx² = d(0.8x)/dx
= 0.8
at x= 5 Km
dy/dx = 0.8(5)
= 4
![p = \frac{[1+ (\frac{dy}{dx})^{2}]^{\frac{3}{2} } }{\frac{d^{2y} }{dx^{2} } }](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%20%28%5Cfrac%7Bdy%7D%7Bdx%7D%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%20%7D%7B%5Cfrac%7Bd%5E%7B2y%7D%20%7D%7Bdx%5E%7B2%7D%20%7D%20%7D)
now insert the values,
![p = \frac{[1+(4)^{2}]^{\frac{3}{2} } }{0.8} = 87.62 km](https://tex.z-dn.net/?f=p%20%3D%20%5Cfrac%7B%5B1%2B%284%29%5E%7B2%7D%5D%5E%7B%5Cfrac%7B3%7D%7B2%7D%20%7D%20%20%7D%7B0.8%7D%20%20%3D%2087.62%20km)
→ Now the normal component of acceleration is given by

= (200)²/(87.6×10³)
aₙ = 0.457 m/s²
→ Now the total acceleration is,
![a = [(a_{t})^{2} +(a_{n} )^{2} ]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%28a_%7Bt%7D%29%5E%7B2%7D%20%2B%28a_%7Bn%7D%20%29%5E%7B2%7D%20%5D%5E%7B0.5%7D)
![a = [(0.8)^{2} + (0.457)^{2}]^{0.5}](https://tex.z-dn.net/?f=a%20%3D%20%5B%280.8%29%5E%7B2%7D%20%2B%20%280.457%29%5E%7B2%7D%5D%5E%7B0.5%7D)
a = 0.921 m/s²
Answer:
The speed is equals to 22.49 m/s
Explanation:
Given Data:

Required:
Speed of Traverse wave = c =?
Solution:
As we know that

Now the equation for speed of traverse wave is calculated through:

=
Substituting the values

=22.49 m/s
Answer:
0.1835m/s
Explanation:
The formula for calculating the speed of wave is expressed as;
v = fλ
f is the frequency - The number of oscillations completed in one seconds
If 22 waves pass the boat every 60 seconds,
number of wave that passes in 1 seconds = 22/60 = 0.367 waves
Therefore the frequency f of the wave is 0.367Hertz
λ (wavelength) is the distance between successive crest and trough of a wave
λ = 0.5m
Substitute the given values into the formula
v = fλ
v = 0.367 * 0.5
v = 0.1835
Hence the speed of the waves is 0.1835m/s