Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A
To solve this problem it is necessary to apply the concepts related to the Stefan-Boltzmann law which establishes that a black body emits thermal radiation with a total hemispheric emissive power (W / m²) proportional to the fourth power of its temperature.
Heat flow is obtained as follows:

Where,
F =View Factor
A = Cross sectional Area
Stefan-Boltzmann constant
T= Temperature
Our values are given as
D = 0.6m

The view factor between two coaxial parallel disks would be


Then the view factor between base to top surface of the cylinder becomes
. From the summation rule


Then the net rate of radiation heat transfer from the disks to the environment is calculated as





Therefore the rate heat radiation is 780.76W
A pebbled, uneven road would be easier to see at night because it minimizes the reflection of light from car’s light coming in the opposite direction. It is difficult to see when driving on the rainy day because the roadway reflects light from cars coming in the opposite <span>directions.</span>
The question is asking to describe and state and calculate what do the observer on the earth measure for the speed of the laser beam, and base on my research, the answer would be v = 1bc, I hope you are satisfied with my answer and feel free to ask for more
For an object to be in equilibrium, it must be experiencing no acceleration. This means that both the net force and the net torque on the object must be zero.