Answer:
Explanation:
Near point = 56 cm .
near point of healthy person = 25 cm
person suffers from long sightedness
convex lens will be required .
object distance u = 25 cm
image distance v = 56 cm
both will be negative as both are in front of the lens.
lens formula
I/v - 1 / u = 1/f
- 1/56 +1/25 = 1/f
- .01785 + .04 = 1/f
1/f = .02215
f = 45.15 cm .
Given that,
Initial velocity , Vi = 0
Final velocity , Vf = 40 m/s
Acceleration due to gravity , a = 9.81 m/s²
Distance can be calculated as,
2as = Vf² - Vi²
2 * 9.81 *s = 40² - 0²
s = 81.55 m
For half height, that is, s = 40.77m
Vf= ??
2as = Vf² - Vi²
2 * 9.81 * 40.77 = Vf² - 0²
Vf² = 800
Vf = 28.28 m/s
Therefore, speed of roller coaster when height is half of its starting point will be 28 m/s.
The inner planets are not colder or larger than the outer ones,
and they're not comprised of gas.
The inner planets are the ones that are made of rock. ( D ).
Answer:
The railroad tracks are 13 m above the windshield (12 m without intermediate rounding).
Explanation:
First, let´s calculate the time it took the driver to travel the 27 m to the point of impact.
The equation for the position of the car is:
x = v · t
Where
x = position at time t
v = velocity
t = time
x = v · t
27 m = 17 m/s · t
27 m / 17 m/s = t
t = 1.6 s
Now let´s calculate the distance traveled by the bolt in that time. Let´s place the origin of the frame of reference at the height of the windshield:
The position of the bolt will be:
y = y0 + 1/2 · g · t²
Where
y = height of the bolt at time t
y0 = initial height of the bolt
g = acceleration due to gravity
t = time
Since the origin of the frame of reference is located at the windshield, at time 1.6 s the height of the bolt will be 0 m (impact on the windshield). Then, we can calculate the initial height of the bolt which is the height of the railroad tracks above the windshield:
y = y0 + 1/2 · g · t²
0 = y0 -1/2 · 9.8 m/s² · (1.6 s)²
y0 = 13 m