Answer:
The total distance will be 400 m.
Explanation:
For portion AB:
Acceleration = 2
t= 10 s
Car start from rest , u=0 m/s
We know that


S= 100 m.
For portion BC:
V= u + at
V=0 + 2 x 10
V= 20 m/s
In this portion car moves with constant velocity 20 m/s for 10 s.
So distance S= V x t
S=20 x 10 =200 m.
For portion CD:
The velocity at point C will be 20 m/s
In this portion the final speed of car will be zero because given that at final car come to rest.
So the acceleration will be in the negative direction to stop the car.
We know that


S=100 m
The total distance AD=AB + BC+ CD
AD=100 +200 + 100 m
AD=400 m.
The total distance will be 400 m.
Answer:
<h2>f=a×m</h2>
m=1800kg
1800000g×10N/kg
18000000N force is required to life the car
Answer:
14 m/s
Explanation:
Using the principle of conservation of energy, the potential energy is converted to kinetic energy, assuming any losses.
Kinetic energy is given by ½mv²
Potential energy is given by mgh
Where m is the mass, v is the velocity, g is acceleration due to gravity and h is the height.
Equating kinetic energy to be equal to potential energy then
½mv²=mgh
V
Making v the subject of the formula
v=√(2gh)
Substituting 9.81 m/s² for g and 10 m for h then
v=√(2*9.81*10)=14.0071410359145 m/s
Rounding off, v is approximately 14 m/s
Answer:
CO2 increases in the winter
Explanation:
Kinetic energy = 1/2 * mass * velocity^2
In this case,
KE = 1/2 * 1569 kg * (15 (m/s))^2 = 176,5 kN