Answer:
the answer that you are looking for is d
Explanation:
Answer:
In 1897, the British physicist J. J. Thomson (1856–1940) proved that atoms were not the most basic form of matter. He demonstrated that cathode rays could be deflected, or bent, by magnetic or electric fields, which indicated that cathode rays consist of charged particles (Figure 2.2.2 ). More important, by measuring the extent of the deflection of the cathode rays in magnetic or electric fields of various strengths, Thomson was able to calculate the mass-to-charge ratio of the particles. These particles were emitted by the negatively charged cathode and repelled by the negative terminal of an electric field. Because like charges repel each other and opposite charges attract, Thomson concluded that the particles had a net negative charge; these particles are now called electrons. Most relevant to the field of chemistry, Thomson found that the mass-to-charge ratio of cathode rays is independent of the nature of the metal electrodes or the gas, which suggested that electrons were fundamental components of all atoms.
Explanation:
Answer:
See explanation
Explanation:
A. Constitutional or structural isomers have the same molecular formula but different structural formulas.
B. Conformational isomers are compounds having the same atom to atom connectivity but differ by rotation about one or more single bonds.
C. Stereo isomers are compounds having the same molecular mass and atom to atom connectivity but different arrangement of atoms and groups in space.
I. Enantiomers are stereo isomers (optical isomers particularly) that are non-superimposable mirror images of each other.
II. Diasteromers are optical isomers that are not mirror images of each other.
Both diasteromers and enantiomers are types of optical isomers which in turn is one of the types of stereo isomers.
Stereo isomers differ from conformational isomers in that the arrangement of atoms in stereo isomers is permanent while conformational isomers results from free rotations in molecules about single bonds.
Answer:
Sodium
(Na)
Just count the electrons and search which atom it is.