Answer:
b. 485 kPa
Explanation:
Gay-Lussac's law express that the pressure of a gas under constant volume is directly proportional to the absolute temperature. The equation is:
P1T2 = P2T1
<em>P is pressure and T absolute temperature of 1, initial state and 2, final state of the gas</em>
<em>Where P1 = 74psi</em>
<em>T2 = 20°C + 273.15 = 293.15K</em>
<em>P2 = ?</em>
<em>T1 = (95°F -32) * 5/9 + 273.15 = 308.15K</em>
<em />
Replacing:
74psi*293.15K = P2*308.15K
70.4psi
In kPa:
70.4psi * (6.895kPa / 1psi) =
<h3>b. 485 kPa
</h3>
Explanation:
The rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time. Reaction rates can vary dramatically.
Answer:
i think snowball, it sounds weird but its true (i think im sorry if its wrong)
Explanation:
Answer:
newtons 3rd law of motion
Explanation:
The majority of wind turbines consist of three blades mounted to a tower made from tubular steel. There are less common varieties with two blades, or with concrete or steel lattice towers. At 100 feet or more above the ground, the tower allows the turbine to take advantage of faster wind speeds found at higher altitudes.
Turbines catch the wind's energy with their propeller-like blades, which act much like an airplane wing. When the wind blows, a pocket of low-pressure air forms on one side of the blade. The low-pressure air pocket then pulls the blade toward it, causing the rotor to turn. This is called lift. The force of the lift is much stronger than the wind's force against the front side of the blade, which is called drag. The combination of lift and drag causes the rotor to spin like a propeller. So therefore your answer would be A.
If this helped could you leave a brainlyest?