See below for the terms, coefficients, and constants in the variable expressions
<h3>How to determine the terms, coefficients, and constants in the variable expressions?</h3>
To determine the terms, coefficients, and constants, we use the following instance:
ax + by + c
Where the variables are x and y
- Then the terms are ax, by and c
- The coefficients are a and b
- The constant is c
Using the above as guide, we have:
A) 2b + 2ac+5
- Terms: 2b, 2ac, 5
- Coefficient: 2, 2 and 5
- Constant 5
B) 34abx + 16y +1
- Terms: 34abx, 16y, 1
- Coefficient: 34ab, 16
- Constant: 1
C) st +4u + v
- Terms: st, 4u, v
- Coefficient: 4
D) 14xy + 6
- Terms: 14xy, 6
- Coefficient: 14, 6
- Constant 6
E) 14x + 12y
- Terms: 14x, 12y
- Coefficient: 14, 12
F) 3+ 6-7+a
- Terms: 3, 6, -7, a
- Coefficient: 1
- Constant: 3, 6, -7
Read more about terms, coefficients, and constants at:
brainly.com/question/14625487
#SPJ1
Answer:
27
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Step-by-step explanation:
<u>Step 1: Define</u>
3 - 6(z - 2)
z = -2
<u>Step 2: Evaluate</u>
- Substitute in <em>z</em>: 3 - 6(-2 - 2)
- (Parenthesis) Subtract: 3 - 6(-4)
- Multiply: 3 + 24
- Add: 27
Answer:
-7/3
Step-by-step explanation:
2(6−4)=3(6+2)
2(6x-4)=3(6x+2)
Solve
1
Distribute
2(6−4)=3(6+2)
{\color{#c92786}{2(6x-4)}}=3(6x+2)
12−8=3(6+2)
{\color{#c92786}{12x-8}}=3(6x+2)
2
Distribute
12−8=3(6+2)
12x-8={\color{#c92786}{3(6x+2)}}
12−8=18+6
12x-8={\color{#c92786}{18x+6}}
3
Add
8
8
to both sides of the equation
12−8=18+6
12x-8=18x+6
12−8+8=18+6+8
12x-8+{\color{#c92786}{8}}=18x+6+{\color{#c92786}{8}}
5 more steps
Solution
=−7/3
Answer:
B & C
Step-by-step explanation:
√16 / √100
= 4 / 10
= 2 / 5
25/19 = 1.31589474
.0131589474%