The period of a simple pendulum is given by:

where L is the pendulum length, and g is the gravitational acceleration of the planet. Re-arranging the formula, we get:

(1)
We already know the length of the pendulum, L=1.38 m, however we need to find its period of oscillation.
We know it makes N=441 oscillations in t=1090 s, therefore its frequency is

And its period is the reciprocal of its frequency:

So now we can use eq.(1) to find the gravitational acceleration of the planet:
Answer:
The body acts under the influence of gravity.
Explanation:
An object experiencing free fall is acting under the influence of gravitational force and the acceleration due gravity is positive for any falling object. The body is able to fall freely due to the effect of gravity on it. This gravity effect causes the body to get attracted to the earth's gravitational surface due to gravitational pull exerted on the body.
The two forces of gravity are equal
Explanation:
We can answer this question by applying Newton's third law of motion, which states that:
"When an object A exerts a force (called action) on an object B, then object B exerts an equal and opposite force (called reaction) on object A"
In this problem, we can identify the Sun as object A and the Earth as object B. This means that the force of gravity exerted by the Sun on the Earth is the action, while the force of gravity exerted by the Earth on the Sun is the reaction: according to Newton's third law, these two forces are equal and opposite.
Therefore, the two forces of gravity are equal in magnitude, which is given by:

where
G is the gravitational constant
M is the mass of the Sun
m is the mass of the Earth
r is the separation between the Earth and the Sun
Learn more about Newton's third law:
brainly.com/question/11411375
#LearnwithBrainly
Using a basking spot so some sort of heated object, for example heating lamp or heating pad.