The metalloids are Boron, Silicon, Geranium, etc and are found to the right of the metals and the left of the nonmetals. Since that is not an option, the best choice would be: The metalloids are located below nonmetals and above metals within a group.
The molecules of hydrogen gas that are formed is when 48.7 g of sodium are added to water is 6.375 x 10²³ molecules
<u><em>calculation</em></u>
2 Na +2H₂O → 2 NaOH +H₂
Step 1: find the moles of sodium (Na)
moles =mass÷ molar mass
from periodic table the molar mass of Na = 23 g/mol
moles= 48.7 g÷ 23 g/mol =2.117 moles
Step 2:use the mole ratio to determine the moles of H₂
from given equation Na:H₂ is 2:1
therefore the moles of H₂ = 2.117 moles x 1/2=1.059 moles
Step 3: find the molecules of H₂ using the Avogadro's law
According to Avogadro's law 1 mole = 6.02 x 10²³ molecules
1.059 moles = ? molecules
by cross multiplication
= [(1.059 moles x 6.02 x10²³ molecules) / 1 mole] =6.375 x 10²³ molecules
Answer:
SOMEONE AANSWER THIS PLEASE OMG !!!!!!
Explanation:
IM STUPID HELPPPZp
Chemical reaction of PO₄³⁻ ion in water:
PO₄³⁻(aq) + H₂O(l) → HPO₄²⁻(aq) +OH⁻(aq).
Kb = [HPO₄²⁻] · [OH⁻] / [PO₄³⁻]; <span>base ionization constant.
</span>Base ionization constant <span>is the equilibrium </span>constant<span> for the </span>ionization<span> of a </span>base<span>.
</span>According
to Bronsted-Lowry theory acid are donor of protons and bases are
acceptors of protons (the hydrogen cation or H⁺<span>).
</span>PO₄³⁻ is Bronsted base and it can accept proton and
become conjugate acid HPO₄²⁻.
Answer:
it is an exothermic reaction
Explanation:
exothermic reactions have a negative ∆H
i.e, product of the reaction is less that the reactants of the reaction
(Note : ∆H= products - reactants), that's why it's exothermic