The lighter components are able to rise higher in the column before they are cooled to their condensing temperature, allowing them to be removed at slightly higher levels.
I hope this helps
This
can be solved using Dalton's Law of Partial pressures. This law states that the
total pressure exerted by a gas mixture is equal to the sum of the partial
pressure of each gas in the mixture as if it exist alone in a container. In
order to solve, we need the partial pressures of the gases given. Calculations
are as follows:<span>
<span>P = 3.00 atm + 1.80 atm + 0.29 atm + 0.18 atm + 0.10 atm</span></span>
<span><span>P = 5.37 atm</span></span>
Explanation:
Charles' law gives the relationship between the volume and the temperature of the gas. Mathematically,
Volume ∝ Temperature
i.e. 
We have, V₁ = 1.6 L, T₁ = 278 K, T₂ = 253, V₂=?

So, the new volume is 1.45 L.
The correct answer is Solute
Explanation:
In chemistry, a solution refers to a homogenous mixture of two substances that occurs through dissolution, this means once they are mixed the substances form a uniform new substance and cannot be easily separated. Additionally, in chemistry, the substances involved in a solution are either classified as solutes if they are the substances that dissolve to form a solution or as solvents in the case of substances in which the solute dissolves in. For example, if you mix salt and water, the salt acts as the solute while the water is the solvent. Thus, the component which dissolves in a solution is called the solute.