The product of this reaction is a halohydrin as shown here.
<h3>What are the products?</h3>
We have a reaction that first involves the formation an alkene as the bases are used on the first substrate. The alkene that is thus created is now able to react with the bromine in water.
The first step of the reaction is where the multiple bond is created and this multiple bond is what can now go on to participate in a chemical reaction in the next step of the process of reaction as shown in the image.
Bromine in water is also hat we call bromine water. This bromine water is able to add across a double bond and when that happen we will have a saturated compound. This could also be regarded as halohydrin reaction.
Recall that the first step of the reaction of the alkene with bromine is the formation of a dibromide via the brominium intermediate. This is now followed by reaction with water to form the halohydrin product.
Learn more about organic reaction:brainly.com/question/9585105
#SPJ1
Answer:
19.3 g/mL
Explanation:
The following data were obtained from the question:
Mass (m) = 12.4 kg
Volume (V) = 642 mL.
Density (D) =.?
Next, we shall convert 12.4 kg to grams. This can be obtained as follow:
1 kg = 1000 g
Therefore,
12.4 kg = 12.4 × 1000
12.4 kg = 12400 g
Therefore, 12.4 kg is equivalent to 12400 g.
Finally, we shall determine the density of the gold as follow:
Density is simply defined as the mass of the substance per unit volume of the substance. It can be represented mathematically as:
Density (D) = mass (m) / volume (V)
D = m/V
With the above formula, the density of gold can easily be obtained as follow:
Mass (m) = 12400 g
Volume (V) = 642 mL.
Density (D) =.?
D = m/V
D = 12400/642
D = 19.3 g/mL
Therefore, the density of hold is 19.3 g/mL
Answer:
Water volume produced is 7.3 mL
Explanation:
This the reaction:
4NH₃ (g) + 5O₂ (g) → 4NO (g) + 6H₂O (g)
We have to work with density, to solve this question
Density of ammonia = Ammonia mass / Ammonia volume
0,00073 g/mL = Ammonia mass / 6300 mL
(Notice, we had to convert 6.3L to mL)
0.00073 g/mL . 6300 mL = Ammonia mass → 4.599 g
Mass / Molar mass = Mol
4.599 g / 17g/m = 0.270 mole
Ratio is 4:6
4 mole of ammonia produce 6 mole of water
0.270 mole produce (0.270 .6)/4 = 0.405 mol
Molar mass . mole = mass
18 g/m . 0.405 m = 7.30 g
Water density = 1 g/mL
Water density = Water mass / Water Volume
1g/mL = 7.30 g / Water volume
Water volume = 7.3 mL
Standard Temperature and Pressure (STP) are 273.15 K (Kelvin) and 101.3 KPa (kilopascals).
You can substitute 1 ATM (atmosphere) for the kilopascal measurement. It is discouraged to use 0°C for the temp equivalent since negative temperature numbers can't be used in gas equations..
Answer:
0.364
Explanation:
Let's do an equilibrium chart for the reaction of combustion of ammonia:
2NH₃(g) + (3/2)O₂(g) ⇄ N₂(g) + 3H₂O(g)
4.8atm 1.9atm 0 0 Initial
-2x -(3/2)x +x +3x Reacts (stoichiometry is 2:3/2:1:3)
4.8-2x 1.9-(3/2)x x 3x Equilibrium
At equilibrium the velocity of formation of the products is equal to the velocity of the formation of the reactants, thus the partial pressures remain constant.
If pN₂ = 0.63 atm, x = 0.63 atm, thus, at equilibrium
pNH₃ = 4.8 - 2*0.63 = 3.54 atm
pO₂ = 1.9 -(3/2)*0.63 = 0.955 atm
pH₂O = 3*0.63 = 1.89 atm
The pressure equilibrium constant (Kp) is calculated with the partial pressure of the gases substances:
Kp = [(pN₂)*(pH₂O)³]/[(pNH₃)²*
]
Kp = [0.63*(1.89)³]/[(3.54)²*
]
Kp = 4.2533/11.6953
Kp = 0.364