Answer:
The answer is B
Explanation:
I hope you have/had an amazing day today and may God bless you<3
<span>If each of the pairs of
chromosomes was heterozygous (what gives you the highest potential
number of different gametes), then the number of possible gametes
increases from 4 to 8 for a diploid organism. To figure out how many
are possible, raise the number of homologous chromsomes (2 for a diploid
organism) to the power of the number of chromosomes. So if you have
two different chromosomes (A and B), raise 2 to the 2nd power (or
multiply 2 x 2) and you have 4. If you have chromosomes A, B, and C,
then you have 2^3, or 2 x 2 x 2 = 8.
To show possible combinations, AaBb gives you AB, Ab, aB, or ab. AaBbCc
gives possible gametes of ABC, ABc, AbC, Abc, aBC, aBc, abC, and abc. </span>
Answer:
Translation is the second part of the central dogma of molecular biology: RNA → Protein. It is the process in which the genetic code in mRNA is read to make a protein. Translation is illustrated in the diagram below. After mRNA leaves the nucleus, it moves to a ribosome, which consists of rRNA and proteins.
Explanation:
Within the ribosome, the rRNA molecules direct the catalytic steps of protein synthesis — the stitching together of amino acids to make a protein molecule. In fact, rRNA is sometimes called a ribozyme or catalytic RNA to reflect this function.
Answer:
nuclear membrane, endoplasmic reticulum, Golgi apparatus, and vesicle
Explanation:
The structures or organelles in internal membrane system in the cell do all production, processing and secretion function together. A prokaryotic cell does not contain any membrane bound organelles but Eukaryotic cells do have. Nuclear membrane has double membrane and golgi-rendoplasmic reticulum and vesicle contain single membrane so all these organelles are membrane bounded.