Answer: A
Step-by-step explanation:
Answer:
D
Step-by-step explanation:
if you look at the chart. it goes up five and has a width of 2. multiply 5 x 2 = you get 10
Answer:
B
Step-by-step explanation:
just think about it :
can it move up or down ? no, because for a specific input value still the same functional result is calculated (nothing is getting bigger or smaller).
all that is happening that way is that now, with using g(x), the original f(x) functional values happen now 2 units "later" = to the right (if you consider the x-axis a time line growing to the right). we are getting the functional value of f(x-2) at x and not at x-2 for g(x).
for example
the functional values are for x² (just some integers to make it easier) :
x = 1, 2, 3, 4, 5, ...
getting
f(1), f(2), f(3), f(4), f(5), ...
leading to
1², 2², 3² 4², 5², ...
which is
1, 4, 9, 16, 25, ...
now, let's say we start looking at x = 3
x = 3, 4, 5, 6, 7, ...
getting
g(3), g(4), g(5), g(6), g(7), ..
leading to
1², 2², 3² 4², 5², ...
which is
1, 4, 9, 16, 25, ...
so, now we are getting the functional value at e.g. x = 5 that we got originally for x = 3 (9).
therefore, under g(x) the original functional values still "happen", they just simply "happen" 2 units "later" (to the right).
in the same way
g(x) = f(x+2) moves everything 2 units to the left (now things are happening "earlier").
Answer:
a. P(X = 0) = 0.02586
b. 
c. 
Step-by-step explanation:
From the given information:
a. If the manufacturer stocks 120 components, what is the probability that the 120 orders can be filled without reordering components?


P(X = 0) = 1 × 1 ( 0.97)¹²⁰ ⁻ ⁰
P(X = 0) = 0.02586
b. ) If the manufacturer stocks 122 components, what is the probability that the 120 orders can be filled without reordering components?
![P(X \leq 2 ) = [ P(X=0) + P(X =1) + P(X = 2) ]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%20P%28X%3D0%29%20%2B%20P%28X%20%3D1%29%20%2B%20P%28X%20%3D%202%29%20%5D)
![P(X \leq 2 ) = [(^{122}_{0})(0.03)^0 (0.97)^{122-0}+(^{122}_{1})(0.03)^1 (0.97)^{122-1}+(^{122}_{2})(0.03)^2 (0.97)^{122-2}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%28%5E%7B122%7D_%7B0%7D%29%280.03%29%5E0%20%280.97%29%5E%7B122-0%7D%2B%28%5E%7B122%7D_%7B1%7D%29%280.03%29%5E1%20%20%280.97%29%5E%7B122-1%7D%2B%28%5E%7B122%7D_%7B2%7D%29%280.03%29%5E2%20%280.97%29%5E%7B122-2%7D%5D)
![P(X \leq 2 ) = [\dfrac{122!}{0!(122-0)! } \times 1 \times (0.97)^{122}+\dfrac{122!}{1!(122-1)! } \times (0.03) (0.97)^{121}+\dfrac{122!}{2!(122-2)! } \times 9 \times 10^{-4} \times (0.97)^{120}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%5Cdfrac%7B122%21%7D%7B0%21%28122-0%29%21%20%7D%20%5Ctimes%201%20%5Ctimes%20%20%280.97%29%5E%7B122%7D%2B%5Cdfrac%7B122%21%7D%7B1%21%28122-1%29%21%20%7D%20%5Ctimes%20%280.03%29%20%20%280.97%29%5E%7B121%7D%2B%5Cdfrac%7B122%21%7D%7B2%21%28122-2%29%21%20%7D%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%20%280.97%29%5E%7B120%7D%5D)
![P(X \leq 2 ) = [(1 \times 1 \times 0.02433 )+(122 \times (0.03) \times 0.025083)+(7381 \times 9 \times 10^{-4} \times 0.02586)]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%202%20%29%20%3D%20%5B%281%20%5Ctimes%20%201%20%5Ctimes%20%200.02433%20%29%2B%28122%20%5Ctimes%20%280.03%29%20%20%5Ctimes%200.025083%29%2B%287381%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%200.02586%29%5D)

(c) If the manufacturer stocks 125 components, what is the probability that the 120 orders can be filled without reordering components?
![P(X \leq 5 ) = [ P(X=0) + P(X =1) + P(X = 2) +P(X = 3)+P(X = 4)+ P(X = 5) ]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%20P%28X%3D0%29%20%2B%20P%28X%20%3D1%29%20%2B%20P%28X%20%3D%202%29%20%20%2BP%28X%20%3D%203%29%2BP%28X%20%3D%204%29%2B%20P%28X%20%3D%205%29%20%20%20%20%5D)
![P(X \leq 5 ) = [(^{122}_{0})(0.03)^0 (0.97)^{122-0}+(^{122}_{1})(0.03)^1 (0.97)^{122-1}+(^{122}_{2})(0.03)^2 (0.97)^{122-2} + (^{122}_{3})(0.03)^3 (0.97)^{122-3} + (^{122}_{4})(0.03)^4 (0.97)^{122-4}+ (^{122}_{5})(0.03)^5 (0.97)^{122-5}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%28%5E%7B122%7D_%7B0%7D%29%280.03%29%5E0%20%280.97%29%5E%7B122-0%7D%2B%28%5E%7B122%7D_%7B1%7D%29%280.03%29%5E1%20%20%280.97%29%5E%7B122-1%7D%2B%28%5E%7B122%7D_%7B2%7D%29%280.03%29%5E2%20%280.97%29%5E%7B122-2%7D%20%2B%20%28%5E%7B122%7D_%7B3%7D%29%280.03%29%5E3%20%280.97%29%5E%7B122-3%7D%20%2B%20%28%5E%7B122%7D_%7B4%7D%29%280.03%29%5E4%20%280.97%29%5E%7B122-4%7D%2B%20%28%5E%7B122%7D_%7B5%7D%29%280.03%29%5E5%20%280.97%29%5E%7B122-5%7D%5D)
![P(X \leq 5 ) = [\dfrac{122!}{0!(122-0)! } \times 1 \times (0.97)^{122}+\dfrac{122!}{1!(122-1)! } \times (0.03) (0.97)^{121}+\dfrac{122!}{2!(122-2)! } \times 9 \times 10^{-4} \times (0.97)^{120} + \dfrac{122!}{3!(122-3)! }*(0.03)^3(0.97)^{122-3)}+ \dfrac{122!}{4!(122-4)! }*(0.03)^4(0.97)^{122-4)} +\dfrac{122!}{5!(122-5)! } *(0.03)^5(0.97)^{122-5)}]](https://tex.z-dn.net/?f=P%28X%20%5Cleq%205%20%29%20%3D%20%5B%5Cdfrac%7B122%21%7D%7B0%21%28122-0%29%21%20%7D%20%5Ctimes%201%20%5Ctimes%20%20%280.97%29%5E%7B122%7D%2B%5Cdfrac%7B122%21%7D%7B1%21%28122-1%29%21%20%7D%20%5Ctimes%20%280.03%29%20%20%280.97%29%5E%7B121%7D%2B%5Cdfrac%7B122%21%7D%7B2%21%28122-2%29%21%20%7D%20%5Ctimes%209%20%5Ctimes%2010%5E%7B-4%7D%20%5Ctimes%20%280.97%29%5E%7B120%7D%20%2B%20%5Cdfrac%7B122%21%7D%7B3%21%28122-3%29%21%20%7D%2A%280.03%29%5E3%280.97%29%5E%7B122-3%29%7D%2B%20%5Cdfrac%7B122%21%7D%7B4%21%28122-4%29%21%20%7D%2A%280.03%29%5E4%280.97%29%5E%7B122-4%29%7D%20%2B%5Cdfrac%7B122%21%7D%7B5%21%28122-5%29%21%20%7D%20%2A%280.03%29%5E5%280.97%29%5E%7B122-5%29%7D%5D)

A) 5
Two sides of a triangle have to be the same size. IF we aren't talking about a scalene.