Answer:
Explanation:
a.
Actin and myosin, two contractile proteins, make up myofibrils. ATPase activity is present in the myosin head. Troponin tropomyosin complex is displaced by calcium ions, exposing myosin's entire surrounding binding site on actin. Myosin heads execute the power stroke, and detachment of the head is needed for the second cycle. Myosin head detachment is aided by ATP binding & hydrolysis. Since the solution contains AMP-PNP instead of ATP, myosin heads are unable to hydrolyze and detach from myosin-binding sites on actin, thereby preventing contraction.
b.
The active ATPase correlated with both the dynein arms is found in cilia and flagella. Dynein is a motion motor protein family that walks around microtubules. The core of cilia is made up of microtubule bundles linked to the motor protein dynein. In the presence of AMP-PNP, the net reaction will be to stop the ciliary movement by inhibiting dynein motor proteins.
c.
Kinesins and Dyneins, two groups of motion motor proteins with ATPase activity, are involved in axonal transportation. All the motion motor proteins use energy from ATP hydrolysis to transfer secretory vesicles through microtubules. Since the inclusion of AMP-PNP does not supply electricity, vesicular transport does not occur.
Answer:
I believe the correct answer is B. Five
They both are heterotrophs. Both are multicellular eukaryotes. Both reproduce sexually. Both have mitotic and meiotic cell division. Hope this helped=)
bacterial feeders, fungal-feeders, plant parasites, predators, and omnivores.
Yw.
4:(5)7/8% then you subtracy51 s