Answer:
The correct answer choice is <u>option B. 6/x^2</u>
Step-by-step explanation:
Answer:
The solution of |3x-9|≤15 is [-2;8] and the solution |2x-3|≥5 of is (-∞,2] ∪ [8,∞)
Step-by-step explanation:
When solving absolute value inequalities, there are two cases to consider.
Case 1: The expression within the absolute value symbols is positive.
Case 2: The expression within the absolute value symbols is negative.
The solution is the intersection of the solutions of these two cases.
In other words, for any real numbers a and b,
- if |a|> b then a>b or a<-b
- if |a|< b then a<b or a>-b
So, being |3x-9|≤15
Solving: 3x-9 ≤ 15
3x ≤15 + 9
3x ≤24
x ≤24÷3
x≤8
or 3x-9 ≥ -15
3x ≥-15 +9
3x ≥-6
x ≥ (-6)÷3
x ≥ -2
The solution is made up of all the intervals that make the inequality true. Expressing the solution as an interval: [-2;8]
So, being |2x-3|≥5
Solving: 2x-3 ≥ 5
2x ≥ 5 + 3
2x ≥8
x ≥8÷2
x≥8
or 2x-3 ≤ -5
2x ≤-5 +3
2x ≤-2
x ≤ (-2)÷2
x ≤ -2
Expressing the solution as an interval: (-∞,2] ∪ [8,∞)
Given:
loan amount = 300
finance charge = 20
term = 14 days.
To solve for APR.
<span>1. Divide the finance charge by the loan amount.
20/300 = 0.0667
2. Multiply the result by 365.
0.0667 x 365 = 24.35
3. Divide the result by the term of the loan.
24.35/14 = 1.74 (APR in decimal format)
<span>
4. Multiply the result by 100.
1.74 x 100 = 174% APR</span></span>
Answer:
C. . how old they are
Step-by-step explanation:
Geologist are people that deal with the internal structure of the earth.
They study Rocks, and it's deposit accumulated millions of years back.
They can also give account of what happened in the past and the types of organisms that existed in the past.
Fossils are traces of event, remains of dead animals and decomposed object.
So geologist can give account of how many years a particular fossil has lived in that particular environment.
Formula for curvature for a well behaved curve y=f(x) is
K(x)= ![\frac{|{y}''|}{[1+{y}'^2]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B%7C%7By%7D%27%27%7C%7D%7B%5B1%2B%7By%7D%27%5E2%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
The given curve is y=7

k(x)=![\frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
![{k(x)}'=\frac{7(e^x)(1+49e^{2x})(49e^{2x}-\frac{1}{2})}{[1+49e^{2x}]^{3}}](https://tex.z-dn.net/?f=%7Bk%28x%29%7D%27%3D%5Cfrac%7B7%28e%5Ex%29%281%2B49e%5E%7B2x%7D%29%2849e%5E%7B2x%7D-%5Cfrac%7B1%7D%7B2%7D%29%7D%7B%5B1%2B49e%5E%7B2x%7D%5D%5E%7B3%7D%7D)
For Maxima or Minima


→
[not possible ∵there exists no value of x satisfying these equation]
→
Solving this we get
x= 
As you will evaluate
<0 at x=
So this is the point of Maxima. we get y=7×1/√98=1/√2
(x,y)=[
,1/√2]
k(x)=![\lim_{x\to\infty } \frac{7e^{x}}{[{1+(7e^{x})^2}]^\frac{3}{2}}](https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%5Cinfty%20%7D%20%5Cfrac%7B7e%5E%7Bx%7D%7D%7B%5B%7B1%2B%287e%5E%7Bx%7D%29%5E2%7D%5D%5E%5Cfrac%7B3%7D%7B2%7D%7D)
k(x)=
k(x)=0