Answer:
A. 384.16
B. 2,401
C. 9,604
D. No
Step-by-step explanation:
Calculation to determine how large a sample should be taken for each desired margin of error
First step is to find σ which represent Population Standard deviation
σ=($50,000-$30,000)/4
σ=$20,000/4
σ = 5,000
Now let calculate how large a sample should be taken for each desired margin of error
Using this formula
n = (Za/2*σ/E)^2
Where,
Za/2=1-0.95/2
Za/2=0.05/2
Za/2=0.025
Z-score 0.025=1.96
Za/2=1.96
σ =5,000
E represent Desired margin of error
Let plug in the formula
a. $500
n = (1.96* 5,000/$500)^2
n=(9,800/$500)^2
n=(19.6)^2
n = 384.16
b. $200
n = (1.96*5,000/200)^2
n=(9,800/$200)^2
n=(49)^2
n = 2,401
c. $100
n = (1.96*5,000/$100)^2
n=(9,800/$100)^2
n=(98)^2
n = 9,604
Therefore how large a sample should be taken for each desired margin of error will be :
A. $500= 384.16
B. $200= 2,401
C. $100= 9,604
d.NO, Based on the information calculation i would NOT recommend trying to obtain the $100 margin of error reason been that it is highly costly compare to $500 margin of error and $200 margin of error.
Answer:
y = 43, z = 16
Step-by-step explanation:
congruent essentially means they're the same. If you mentally map one triangle onto the other, you'll see that 43, the hypotenuse, lines up with y, and 16 lines up with z.
2.54 * 12=30.48, so 30.48 in one foot, then multiply that by three for a yard, so for a yard it is 91.44 .
Answer: He win 3 out of the 30
Step-by-step explanation:
30 divided by 10 = 3 which is 10 percent of 30 :)