1) Focal length
We can find the focal length of the mirror by using the mirror equation:
(1)
where
f is the focal length
is the distance of the object from the mirror
is the distance of the image from the mirror
In this case,
, while
(the distance of the image should be taken as negative, because the image is to the right (behind) of the mirror, so it is virtual). If we use these data inside (1), we find the focal length of the mirror:
from which we find
2) The mirror is convex: in fact, for the sign convention, a concave mirror has positive focal length while a convex mirror has negative focal length. In this case, the focal length is negative, so the mirror is convex.
3) The image is virtual, because it is behind the mirror and in fact we have taken its distance from the mirror as negative.
4) The radius of curvature of a mirror is twice its focal length, so for the mirror in our problem the radius of curvature is:
Answer:
Relation between initial speed of bullet and height h is given as
Explanation:
As we know that system of block and bullet swings up to height h after collision
So we have
so we have
so speed of the block + bullet just after the impact is given by above equation
Now we also know that there is no force on the system of bullet + block in the direction of motion
So we can use momentum conservation
now we have
BMI is a measure of body fat determined by ones Height, Weight, and Gender.
Answer:
Collisions are basically two types: Elastic, and inelastic collision. Elastic collision is defined as the colliding objects return quickly without undergoing any heat generation. Inelastic collision is defined as the where heat is generated, and colliding objects are distorted.
In elastic collision, the total kinetic energy, momentum are conserved, and there is no wasting of energy occurs. Swinging balls is the good example of elastic collision. In inelastic collision, the energy is not conserved it changes from one form to another for example thermal energy or sound energy. Automobile collision is good example, of inelastic collision.
Answer:
Solution
verified
Verified by Toppr
Given:
Mass of body = 30 kg
gravitational acceleration on the moon = 1.62 m/s
2
Weight of the body on the moon = Mass of the body×gravitational acceleration on the moon=30×1.62=48 N