Answer: The first law of thermodynamics describes how the heat added to a system is conserved.
Explanation:
According to the first law of thermodynamics:
<em />
<em>"Energy is not created, nor destroyed, but it is conserved." </em>
Therefore, this law relates the work and the transferred heat exchanged in a system through the internal energy, which is neither created nor destroyed, <u>it is only transformed. </u>
In other words: The change in the internal energy of a system is equal to the net heat that is transferred to it plus the net work done on it.
Answer;
Hypothesis
Explanation;
A hypothesis is a tentative explanation that accounts for a set of facts and can be tested by further investigation. Scientific hypotheses must be posed in a form that allows them to be tested.
- It represents a possible explanation for an observation, phenomenon, or scientific problem that can be tested by further investigation. Once you do the experiment and find out if it supports the hypothesis, it becomes part of scientific theory. An example of a hypothesis; Hypothesis: Bacterial growth may be affected by temperature.
Answer:
a) wavelength = 656.3 nm
b) the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
Explanation:
Given that;
angle of diffraction Θₓ = 22.78°
incident angle Θ₁ = 0
slit separation d = 5900 lines per cm = 1/5900 cm = 10⁻²/5900 m = 0.01/5900 m
order of diffraction n = 1
wavelength λ = ?
to find the wavelength, we use the expression
λ = d (sinΘ₁ + sinΘₓ) / n
To find the wavelength λ;
λ = 0.01/5900 × (sin0 + sin22.78° )
λ = 6.5626 × 10⁻⁷ m
λ = 656.3 x 10⁻⁹ m
∴ λ = 656.3 nm
b)
According Balnur's series spectral lines; n₁ = 3, n₂ = 2 and
λ = R [ 1/n₂² - 1/n₁²]
where R is Rydberg's constant
from λ = R [ 1/n₂² - 1/n₁²]
R = 1/λ [n₂²n₁² / n₁² - n₂²]
R = 10⁹/ 656.3 [ 9 × 4 / 9 - 4 ]
R = 1.097 × 10⁷ m⁻¹
Therefore the value of Rydberg's constant for this measurement is 1.097 × 10⁷ m⁻¹
The light reactions could be viewed as analogous to a hydroelectric dam. In that case, the wall of the dam that holds back the water would be analogous to the thylakoid membrane.
Thylakoid membrane is present in cyanobacteria and chloroplasts of plants. It plays a crucial role in photosynthesis and photosystem II reactions.
In general, these are the regions where light-dependent reactions take place. The thylakoid membrane is a lipid-bound membrane that maintains potential difference and also controls the flow of liquids across the membrane during light reactions.
In the provided case, we can see that the wall of the dam holds back the water, similarly, in light-dependent reactions, thylakoid membranes control the liquid flow and also regulate the potential gradient across the membrane and also allow the selective proteins to pass through.
If you need to learn more about light reactions click here:
brainly.com/question/26623807
#SPJ4
The amount of time that passes from when this skateboarder begins to slow down until she begins to move back down the incline is 8.75 seconds.
<u>Given the following data:</u>
- Acceleration = -0.2

To calculate the amount of time that passes from when this skateboarder begins to slow down until she begins to move back down the incline, we would apply the first equation of motion;
<h3>
The formula for the first equation of motion.</h3>
Mathematically, the first equation of motion for a decelerating object is given by this formula;

<u>Where:</u>
- t is the time measured in seconds.
Substituting the given parameters into the formula, we have;

Time, t = 8.75 seconds.
Read more on acceleration here: brainly.com/question/24728358