Answer:
The function r(x) represents a constant rate per unit change in x.
Step-by-step explanation:
This is because when you increase in 2, it goes from 37 to 25, a decrease in 12, then when the x goes from 2 to 3, then it has to drop down by 6, or else it won't be linear. It does. 25-6 is 19. Then it goes from 3 to 5, meaning it has an increase of 2 in x, meaning it has to drop down in 12 to be linear, It does. 19-12 is 7. So it is linear, meaning it has a constant rate per unit change in x.
It's A.
Rae made the error when she added 7.
the equation should be:
<span>-14 - 7 = 7x + 7 - 7 </span>
Answer:
Infinite solutions
Step-by-step explanation:
1) First, you can solve this easily by elimination. Multiply the first equation by -2 in order to cancel out terms when adding to the second equation.
2) Then, add the new set of equations together. However, everything cancels out, bringing us to 0 = 0. This means that the lines the equations make must be the same. Thus, all real numbers must make this equation true, meaning that there are infinite solutions.
Answer:
The standard deviation of number of hours worked per week for these workers is 3.91.
Step-by-step explanation:
Problems of normally distributed samples can be solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by

After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X. Subtracting 1 by the pvalue, we This p-value is the probability that the value of the measure is greater than X.
In this problem we have that:
The average number of hours worked per week is 43.4, so
.
Suppose 12% of these workers work more than 48 hours. Based on this percentage, what is the standard deviation of number of hours worked per week for these workers.
This means that the Z score of
has a pvalue of 0.88. This is Z between 1.17 and 1.18. So we use
.





The standard deviation of number of hours worked per week for these workers is 3.91.