In physics we refer to how heavy the object is as the mass.
Fg = mass x acceleration due to gravity
Force is directly proportional to mass, thus if force of gravity increases mass also increases.
<h2>
Answer:</h2>
|B| = 47.0 units
<h2>
Explanation:</h2>
The sum of two vectors (A) and (B) gives another vector (A + B). i.e
(A + B) = (A) + (B) ----------------(i)
<em>From the question;</em>
Vector A = 28.0 units in the positive y-direction. This means that the value of the x-component is zero and the value of the y-component is +28
In unit vector notation vector A is given as;
A = 0i + 28.0j
Vector A + B = 19.0 units in the negative y-direction. This means that the value of the x-component is zero and the value of the y-component is -19.0
In unit vector notation, vector A + B is given as;
A + B = 0i - 19.0j
To get the magnitude of vector B, make B the subject of the formula in equation (i) as follows;
(B) = (A + B) - (A) ------------------ (ii)
Substitute the values of the vectors (A) and (A + B) into equation (ii) as follows;
(B) = (0i - 19.0j) - (0i + 28.0j)
(B) = - 19.0j - 28.0j
(B) = - 47.0j
The magnitude of B, |B|, is therefore;
|B| = |-47.0|
|B| = 47.0 units
For Newton's second law, the force F applied to the object of mass m will cause an acceleration a of the body:

So, the acceleration is

The object undergoes through this acceleration for 10 seconds, t=10 s. Since it is an accelerated motion, we can find its final velocity after 10 seconds:

where

is the initial velocity of the object, which is zero since it starts from rest.
Finally we can calculate the final kinetic energy of the object, which is given by
Hmmm... I’d say that’s pretty accurate. Good job! Well wishes on whatever it is you’re doing.
The frequency of any wave is (speed) / (wavelength).
Frequency = (330 m/s) / (2m) = 165 per second = <em>165 Hz</em>.
Period = 1 / frequency = 1 / (165 per second) = <em>0.0061 second </em>