Answer:
7.07 hours
Explanation:
divide the distance by the speed
so in this case, divide 672 by 95
The central angle of a circle is 360° or 2π radians.
Therefore
1 radian = (360 degrees)/(2π radians) = 180/π degrees/radian.
4 radians = (4 radians)*(180/π degrees/radian) = 229.18 degrees.
Answer: C. 229.2°
Answer:
The Celcius and kelvin scale are related unit for unit. One degree unit on the Celcius scale is equivalent to one degree unit on the kelvin scale. The only difference between these two scales is the zero point.
Answer:
Explanation:
Hello,
Let's get the data for this question before proceeding to solve the problems.
Mass of flywheel = 40kg
Speed of flywheel = 590rpm
Diameter = 75cm , radius = diameter/ 2 = 75 / 2 = 37.5cm.
Time = 30s = 0.5 min
During the power off, the flywheel made 230 complete revolutions.
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + ω₂) / 2] × 0.5
But ∇θ = 230 revolutions
∇θ/t = (530 + ω₂) / 2
230 / 0.5 = (530 + ω₂) / 2
Solve for ω₂
460 = 295 + 0.5ω₂
ω₂ = 330rpm
a)
ω₂ = ω₁ + αt
but α = ?
α = (ω₂ - ω₁) / t
α = (330 - 590) / 0.5
α = -260 / 0.5
α = -520rev/min
b)
ω₂ = ω₁ + αt
0 = 590 +(-520)t
520t = 590
solve for t
t = 590 / 520
t = 1.13min
60 seconds = 1min
X seconds = 1.13min
x = (60 × 1.13) / 1
x = 68seconds
∇θ = [(ω₂ + ω₁) / 2] × t
∇θ = [(590 + 0) / 2] × 1.13
∇θ = 333.35 rev/min
Let the data is as following
mass of payload = "m"
mass of Moon = "M"
now we know that we place the payload from the position on the surface of moon to the position of 5r from the surface
So in this case we can say that change in the gravitational potential energy is equal to the work done to move the mass from one position to other
so it is given by

we know that


now from above formula


so above is the work done to move the mass from surface to given altitude