It would have to be 36,719 Km high in order to be to be in geosynchronous orbit.
To find the answer, we need to know about the third law of Kepler.
<h3>What's the Kepler's third law?</h3>
- It states that the square of the time period of orbiting planet or satellite is directly proportional to the cube of the radius of the orbit.
- Mathematically, T²∝a³
<h3>What's the radius of geosynchronous orbit, if the time period and altitude of ISS are 90 minutes and 409 km respectively?</h3>
- The time period of geosynchronous orbit is 24 hours or 1440 minutes.
- As the Earth's radius is 6371 Km, so radius of the ISS orbit= 6371km + 409 km = 6780km.
- If T1 and T2 are time period of geosynchronous orbit and ISS orbit respectively, a1 and a2 are radius of geosynchronous orbit and ISS orbit, as per third law of Kepler, (T1/T2)² = (a1/a2)³
- a1= (T1/T2)⅔×a2
= (1440/90)⅔×6780
= 43,090 km
- Altitude of geosynchronous orbit = 43,090 - 6371= 36,719 km
Thus, we can conclude that the altitude of geosynchronous orbit is 36,719km.
Learn more about the Kepler's third law here:
brainly.com/question/16705471
#SPJ4
Answer:
58.27 N
Explanation:
the data we have is:
mass: 
coefficient of friction: 
and we also know the acceleration of gravity is 
We need to do an analysis of horizontal and vertical forces acting on the object:
-------
Vertically the forces acting on the object:
- Normal force
(acting up from the object)
- weight:
(acting down from)
so the sum of forces in the vertical axis "y" are:

from Newton's second Law we know that
, so:

and since the object is not accelerating in the vertical direction (the movement is only horizontal)
, and:

-----------
now let's analyze the horizontal forces
- frictional force:
and since
--> 
- force to move the object:

and the two forces just mentioned must be opposite, thus the sum of forces in the "x" axis is:

and we are told that the crate moves at a steady speed, thus there is no acceleration: 
and we get:

substituting known values:

Answer:
Explanation:
Use the one-dimensional equation:
which says that the final velocity of a falling object is equal to its initial velocity times the acceleration of gravity times the time it takes to fall. We have the final velocity, -14.5 (negative because its direction is down and down is negative), initial velocity is 0 (because it was held still by someone before it was dropped), and acceleration is -9.8 (negative again, because direction is down while acceleration increases). Filling in:
-14.5 = 0 - 9.8t and
-14.5 = -9.8t so
t = 1.5 seconds
Answer:
Explanation: The planet average distance = 42300km
Kepler's 3rd Law also known as the Harmonic Law states that;
for each planet orbitting the sun, its side real period squared divided by the cube of the semi-major axis of the orbit is a constant.
A planet, mass m, orbits the sun, mass M, in a circle of radius r and a period t. The net force on the planet is a centripetal force, and is caused the force of gravity between the sun and the planet.
Please find the attached file for the solution
Answer:
Explanation:
Heat capacity A = 3 x heat capacity of B
initial temperature of A = 2 x initial temperature of B
TA = 2 TB
Let T be the final temperature of the system
Heat lost by A is equal to the heat gained by B
mass of A x specific heat of A x (TA - T) = mass of B x specific heat of B x ( T - TB)
heat capacity of A x ( TA - T) = heat capacity of B x ( T - TB)
3 x heat capacity of B x ( TA - T) = heat capacity of B x ( T - TB)
3 TA - 3 T = T - TB
6 TB + TB = 4 T
T = 1.75 TB