Answer:
Magnitude of angular acceleration = -3.95 rad/s²
Explanation:
Angular acceleration is the ratio of linear acceleration and radius.
That is

Radius = 72 cm = 0.72 m
Linear acceleration is rate of change of velocity.

Angular acceleration

Angular acceleration = -3.95 rad/s²
Magnitude = 3.95 rad/s²
Let's cut through the weeds and the trash
and get down to the real situation:
A stone is tossed straight up at 5.89 m/s .
Ignore air resistance.
Gravity slows down the speed of any rising object by 9.8 m/s every second.
So the stone (aka Billy-Bob-Joe) continues to rise for
(5.89 m/s / 9.8 m/s²) = 0.6 seconds.
At that timer, he has run out of upward gas. He is at the top
of his rise, he stops rising, and begins to fall.
His average speed on the way up is (1/2) (5.89 + 0) = 2.945 m/s .
Moving for 0.6 seconds at an average speed of 2.945 m/s,
he topped out at
(2.945 m/s) (0.6 s) = 1.767 meters above the trampoline.
With no other forces other than gravity acting on him, it takes him
the same time to come down from the peak as it took to rise to it.
(0.6 sec up) + (0.6 sec down) = 1.2 seconds until he hits rubber again.
Answer:
The value is 
Explanation:
From the question we are told that
The initial pressure is
The initial temperature is ![T_1 = 50 \ F = (50 - 32) * [\frac{5}{9} ] + 273 = 283 \ K](https://tex.z-dn.net/?f=T_1%20%3D%20%2050%20%5C%20F%20%3D%20%2850%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D%20283%20%20%5C%20%20K)
The final temperature is ![T_2 = 320 \ F = (320 - 32) * [\frac{5}{9} ] + 273 =433 \ K](https://tex.z-dn.net/?f=T_2%20%3D%20%20320%20%5C%20F%20%3D%20%28320%20-%2032%29%20%2A%20%5B%5Cfrac%7B5%7D%7B9%7D%20%5D%20%2B%20273%20%3D433%20%20%5C%20%20K)
Generally the equation for adiabatic process is mathematically represented as

=> 
Generally for a monoatomic gas 
So
![14 * 283^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} } =P_2 * 433^{\frac{\frac{5}{3} }{1- [\frac{5}{3} ]} }](https://tex.z-dn.net/?f=14%20%2A%20283%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D%20%3DP_2%20%2A%20433%5E%7B%5Cfrac%7B%5Cfrac%7B5%7D%7B3%7D%20%7D%7B1-%20%5B%5Cfrac%7B5%7D%7B3%7D%20%5D%7D%20%7D)
=> 
=> 
It's important to know that diffraction gratings can be identified by the number of lines they have per centimeter. Often, more lines per centimeter is more useful because the images separation is greater when this happens. That is, the distance between lines increases.
<h2>Therefore, the answer is 2.</h2>