If you substitute the values x = 0 and y = −5 into the second equation, you get a false statement: 2(−5) − 10 = 2(0). To solve this system, try rewriting the first equation as x = 2y − 8. Then substitute 2y − 8 in for x in the second equation, and solve for y. The correct answer is x = −2, y = 3.
Call x as the number of months that Marc and Corinna have the same number of book.
45 +4x= 61 +2x
4x- 2x= 61-45
2x= 16
x= 8
Answer:
Step-by-step explanation:
![f(x) = ( {x}^{3} - 8)^{ \frac{2}{3} } \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2}{3} - 1 } (3 {x}^{2} - 0) \\ \\ f'(x) = \frac{2}{3} ( {x}^{3} - 8)^{ \frac{2 - 3}{3} } \times 3 {x}^{2} \\ \\ f'(x) = 2{x}^{2}( {x}^{3} - 8)^{ \frac{ - 1}{3} } \\ \\ f'(x) = \frac{2{x}^{2}}{( {x}^{3} - 8)^{ \frac{ 1}{3} } } \\ \\ \huge \red{ \boxed{ f'(x) = \frac{2{x}^{2}}{ \sqrt[3]{( {x}^{3} - 8) } } }}](https://tex.z-dn.net/?f=f%28x%29%20%3D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20%7D%20%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%7D%7B3%7D%20-%201%20%7D%20%283%20%7Bx%7D%5E%7B2%7D%20%20-%200%29%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%5Cfrac%7B2%7D%7B3%7D%20%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B2%20-%203%7D%7B3%7D%20%20%7D%20%20%5Ctimes%203%20%7Bx%7D%5E%7B2%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%202%7Bx%7D%5E%7B2%7D%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%20-%201%7D%7B3%7D%20%20%7D%20%5C%5C%20%20%5C%5C%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%5E%7B%20%5Cfrac%7B%201%7D%7B3%7D%20%20%7D%20%7D%20%5C%5C%20%20%5C%5C%20%5Chuge%20%5Cred%7B%20%5Cboxed%7B%20f%27%28x%29%20%3D%20%20%20%5Cfrac%7B2%7Bx%7D%5E%7B2%7D%7D%7B%20%5Csqrt%5B3%5D%7B%28%20%7Bx%7D%5E%7B3%7D%20%20-%208%29%20%7D%20%7D%20%7D%7D)
The answer is 6/4 but simplified it is 3/2
Answer
i believe the answer would be the third photo if the third photo for you is the one that doesn’t pass the vertical line test
Explanation
if the relation is a function no two pints should touch going down hence the vertical line test
hope this helps and have a wonderful day :)