1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aliun [14]
4 years ago
13

The table shows where sixth grade students at Sharonton

Mathematics
1 answer:
e-lub [12.9K]4 years ago
3 0
Did you add the picture of the table? I do not see it :(
You might be interested in
The world's oceans hold roughly 1.4 x 109 cubic kilometers of water. A typical bucket holds roughly 20,000 cubic centimeters of
MissTica

Answer:

It'll take a bucket loads of 7 * 10^{20} to empty world's ocean

Step-by-step explanation:

Given

World\ Ocean: 1.4 * 10^9 km^3

Bucket: 20,000 cm^3

1 km^3 = 10^{15} cm^3

To get the number of bucket loads, we simply divide the size of the ocean by the size of the bucket;

Number = \frac{Ocean\ Size}{Bucket\ Size}

Number = \frac{1.4 * 10^9 km^3}{20,000cm^3}

Expand the numerator

Number = \frac{1.4 * 10^9 * 1km^3}{20,000cm^3}

Recall that 1 km^3 = 10^{15} cm^3

So, the expression becomes

Number = \frac{1.4 * 10^9 * 10^{15} cm^3}{20,000cm^3}

Simplify the numerator using laws of indices

Number = \frac{1.4 * 10^{9+15} cm^3}{20,000cm^3}

Number = \frac{1.4 * 10^{25} cm^3}{20,000cm^3}

Expand the denominator

Number = \frac{1.4 * 10^{25} cm^3}{2 * 10,000cm^3}

Number = \frac{1.4 * 10^{25} cm^3}{2 * 10^4\ cm^3}

Split fraction

Number = \frac{1.4}{2} * \frac{10^{25} cm^3}{10^4\ cm^3}

Number = 0.7 * \frac{10^{25}}{10^4\ }

Simplify fraction using laws of indices

Number = 0.7 * 10^{25-4}

Number = 0.7 * 10^{21}

Number = 7 * 10^{20}

Hence, it'll take a bucket loads of 7 * 10^{20} to empty world's ocean

4 0
3 years ago
The length of a rectangle is 2 m greater than the width. The area is 143m^2. Find the length and the width.
iogann1982 [59]

Answer:

L = 13  m     W = 11   m

Step-by-step explanation:

L = W + 2  

area =  L   x   W

143   = (W+2)   *  W

143 =  W^2 + 2w

W^2 + 2W - 143 = 0  

Use Quadratic Formula    (a = 1   b = 2   c = - 143)

   to find   W = 11 m      then   L = 13

8 0
2 years ago
The human resources manager at a company records the length, in hours, of one shift at work, X. He creates the
kiruha [24]

Answer:

.84

Step-by-step explanation:

8 0
4 years ago
If the differential equation t 2y 00 − 2y 0 + (3 + t)y = 0 has y1(t) and y2(t) as a fundamental set of solutions and if W[y1, y2
podryga [215]

In the ODE, solve for y'':

t^2y''-2y'+(3+t)y=0\implies y''=\dfrac{2y'+(3+t)y}{t^2}

The Wronskian is then

W=\begin{vmatrix}y_1&y_2\\{y_1}'&{y_2}'\end{vmatrix}=y_1{y_2}'-{y_1}'y_2

Differentiating the Wronskian gives

W'=({y_1}'{y_2}'+y_1{y_2}'')-({y_1}''y_2+{y_1}'{y_2}')=y_1{y_2}''-{y_1}''y_2

Substitute y_1,y_2 into the equation for y'', then substitute {y_1}'',{y_2}'' into W':

W'=y_1\dfrac{2{y_2}'+(3+t)y_2}{t^2}-y_2\dfrac{2{y_1}'+(3+t)y_1}{t^2}

\implies W'=\dfrac{2W}{t^2}

which is another separable ODE; we have

\dfrac{\mathrm dW}W=\dfrac2{t^2}\,\mathrm dt\implies \ln|W|=-\dfrac2t+C\implies W=Ce^{-2/t}

Given that W(y_1,y_2)(2)=3, we find

3=Ce^{-2/2}\implies C=3e

so that

W(y_1,y_2)(t)=3e^{1-2/t}

and so

W(y_1,y_2)(6)=\boxed{3e^{2/3}}

8 0
3 years ago
Let <img src="https://tex.z-dn.net/?f=i" id="TexFormula1" title="i" alt="i" align="absmiddle" class="latex-formula"> be the imag
VLD [36.1K]

Hey~freckledspots!\\----------------------

We~will~solve~for~i^{425}!

Rule~of~exponent: a^{b + c} = a^ba^c\\Apply:~i^{425}~=~i^{424}i\\ \\Rule~of~exponent: a^{bc} = (a^{b})^c\\Apply: i^{424} = i(i^2)^{212} \\\\Rule~of~imaginary~number: i^2 = -1\\Apply: i(i^2)^{212} = -1^{212}i\\\\Rule~of~exponent~if~n~is~even: -a^n = a^n\\Apply: -1^{212}i = 1^{212}i\\\\Simplify: 1^{212}i = 1i\\Multiply: 1i * 1 = i\\----------------------\\

Now~let's~solve~1^{14}!\\\\Rule~of~exponent: a^{b + c} = a^ba^c\\Apply: i^{14} = (i^2)^7\\\\Rule~of~imaginary~number: i^2 = -1\\Apply: (i^2)^7 = -1^7\\\\Rule~of~exponent~if~n~is~odd: (-a)^n = -a^n\\Apply: -1^7 = -1^7\\\\Simplify: -1^7 = -1\\----------------------\\Now,~we~have: i-1+i^{-14}+i^{44}\\----------------------

Now~lets~solve~i^{-14}\\\\Rule~of~exponent: a^{-b} = \frac{1}{a^b} \\Apply: i^{-14} = \frac{1}{i^{14}} \\\\Rule~of~exponent: a^{bc} = (a^b)^c\\Apply: \frac{1}{i^{14}} = \frac{1}{(i^2)^7}\\ \\Rule~of~imagianry~number: i^2 = -1\\Apply: \frac{1}{(i^2)^7} = \frac{1}{-1^7} \\\\Simplify: \frac{1}{-1^7} = \frac{1}{-1} \\\\Rule~of~fractions: \frac{a}{-b} = -\frac{a}{b} \\Apply: \frac{1}{-1} = -\frac{1}{1} = -1\\----------------------\\Now,~we~have: i-1-1+i^44\\----------------------

Now~let's~solve~i^{44}!\\\\Rule~of~exponent: a^{bc} = (a^b)^c\\Apply: i^{44} = (i^2)^{22}\\\\Rule~of~imaginary~numbers: i^2 = -1\\Apply: (i^2)^{22} = -1^{22}\\\\Rule~of~exponent~if~n~is~even: (-a)^n = a^n\\Apply: -1^{22} = 1^{22}\\\\Simplify: 1^{22} = 1\\----------------------\\Now,~we~have~i-1-1+1\\----------------------

Now~let's~simplify~the~expression!\\\\= i-1-1+1 \\= 1 + i -2\\= -1+i\\----------------------

Answer:\\\large\boxed{-1+i}\\----------------------

Hope~This~Helped!~Good~Luck!

8 0
4 years ago
Read 2 more answers
Other questions:
  • The table shows the cost for bowling at two bowling alleys
    8·1 answer
  • 18 is divisible by both 2 and 3 it is also divisible by 2 into 36 similarly a number is divisible by both 4 and 6 can we say tha
    9·1 answer
  • What is 3/49 simplified?
    7·2 answers
  • A chemistry teacher needs to mix an acid solution for an experiment. how much hydrochloric acid needs to be mixed with 1500 mill
    12·1 answer
  • What is 9z when z = 2
    14·2 answers
  • How do i know if a system of equation has infinite number of solutions
    12·1 answer
  • What is the answer to this question 7.2 x 10^-8
    5·1 answer
  • -7x + 3 ÷ 3
    13·1 answer
  • Question 1-2
    5·1 answer
  • The amount of snow on the ground increased by 4 inches between 1 p.m. and 6 p.m. What integer represents the amount of snow that
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!