Answer:
\frac{13+\left(-3\right)^2+4\left(-3\right)+1-\left[-10-\left(-6\right)\right]}{\left[4+5\right]\div \left[4^2\:−\:3^2\left(4−3\right)−8\right]+12}
Step-by-step explanation:
\frac{13+\left(-3\right)^2+4\left(-3\right)+1-\left(-10-\left(-6\right)\right)}{\frac{4+5}{\left(4^2-3^2\left(4-3\right)-8\right)+12}}
Could you type the question, please.
38.48 cm. This is so because the equation to find circumference is

R squared.
Answer:

Step-by-step explanation:
![\log_23x+\log_23=2\\\\\bold{DOMAIN}:\\3x>0\to x>0\\\\\text{Use}\ \log_ab+\log_ac=\log_a(bc)\\\\\log_2\bigg[(3x)(3)\bigg]=2\\\\\log_29x=2\qquad\text{use}\ \log_ab=c\iff a^c=b\\\\\log_29x=\log_22^2\\\\\log_29x=\log_24\iff9x=4\qquad\text{divide both sides by 9}\\\\\dfrac{9x}{9}=\dfrac{4}{9}\\\\\boxed{x=\dfrac{4}{9}}\in \bold{DOMAIN}](https://tex.z-dn.net/?f=%5Clog_23x%2B%5Clog_23%3D2%5C%5C%5C%5C%5Cbold%7BDOMAIN%7D%3A%5C%5C3x%3E0%5Cto%20x%3E0%5C%5C%5C%5C%5Ctext%7BUse%7D%5C%20%5Clog_ab%2B%5Clog_ac%3D%5Clog_a%28bc%29%5C%5C%5C%5C%5Clog_2%5Cbigg%5B%283x%29%283%29%5Cbigg%5D%3D2%5C%5C%5C%5C%5Clog_29x%3D2%5Cqquad%5Ctext%7Buse%7D%5C%20%5Clog_ab%3Dc%5Ciff%20a%5Ec%3Db%5C%5C%5C%5C%5Clog_29x%3D%5Clog_22%5E2%5C%5C%5C%5C%5Clog_29x%3D%5Clog_24%5Ciff9x%3D4%5Cqquad%5Ctext%7Bdivide%20both%20sides%20by%209%7D%5C%5C%5C%5C%5Cdfrac%7B9x%7D%7B9%7D%3D%5Cdfrac%7B4%7D%7B9%7D%5C%5C%5C%5C%5Cboxed%7Bx%3D%5Cdfrac%7B4%7D%7B9%7D%7D%5Cin%20%5Cbold%7BDOMAIN%7D)