Answer:
-42
Step-by-step explanation:
Answer: 1/70
Step-by-step explanation:
This is a question that can also be interpreted as what is the probability of having the first number of a phone number to be 8 and the last number of the phone number to also be 8. This answer gives the fraction of the phone numbers that starts with 8 and end with 8.
Since three numbers (0,1,2) cannot start a phone number and we are left to pick from 7 numbers,
then the probability of figure "8" starting phone number = 1/7
Since all 10 numbers can possibly end a phone number,
then the probability of having figure "8" as the last digit of a phone number = 1/10
Hence probability of having "8" as the first and last digit of a phone number = fraction of total telephone numbers that begin with digit 8 and end with digit 8 = 1/7 × 1/10 = 1/70.
5,000 × 3.8%= 19,000×18= 342,000 × 40 = 13,680,000
*see attachment for the missing figure
Answer:
Angle ADE = 45°
Angle DAE = 30°
Angle DEA = 105°
Step-by-step explanation:
Since lines AD and BC are parallel, therefore:
Given that angle Angle CBE = 45°,
Angle ADE = Angle CBE (alternate interior angles are congruent)
Angle ADE = 45° (Substitution)
Angle DAE = Angle ACB (Alternate Interior Angles are congruent)
Angle ACB = 180 - 150 (angles on a straight line theorem)
Angle ACB = 30°
Since angle DAE = angle ACB, therefore:
Angle DAE = 30°
Angle DEA = 180 - (angle ADE + angle DAE) (Sum of angles in a triangle)
Angle DEA = 180 - (45 + 30) (Substitution)
Angle DEA = 180 - 75
Angle DEA = 105°