Given P(E) = 0.24 and P(F ∩ E) = 0.17
It says to find conditional probability of F given E has occurred.
We know the formula of conditional probability is given by :-
P(F ║ E) = 
P(F ║ E) =
= 0.708333
P(F ║ E) = 0.71
Hence, option C i.e. 0.71 is the final answer.
Answer:
9x^2+12x
Step-by-step explanation:
How could have written 5 and 4. But there are more answers.
The coefficient matrix is build with its rows representing each equation, and its columns representing each variable.
So, you may write the matrix as
![\left[\begin{array}{cc}\text{x-coefficient, 1st equation}&\text{y-coefficient, 1st equation}\\\text{x-coefficient, 2nd equation}&\text{y-coefficient, 2nd equation} \end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D%5Ctext%7Bx-coefficient%2C%201st%20equation%7D%26%5Ctext%7By-coefficient%2C%201st%20equation%7D%5C%5C%5Ctext%7Bx-coefficient%2C%202nd%20equation%7D%26%5Ctext%7By-coefficient%2C%202nd%20equation%7D%20%5Cend%7Barray%7D%5Cright%5D%20%20)
which means
![\left[\begin{array}{cc}4&-3\\8&-3\end{array}\right]](https://tex.z-dn.net/?f=%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%20)
The determinant is computed subtracting diagonals:
![\left | \left[ \begin{array}{cc}a&b\\c&d\end{array}\right]\right | = ad-bc](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%20%5Cbegin%7Barray%7D%7Bcc%7Da%26b%5C%5Cc%26d%5Cend%7Barray%7D%5Cright%5D%5Cright%20%7C%20%3D%20ad-bc%20)
So, we have
![\left | \left[\begin{array}{cc}4&-3\\8&-3\end{array}\right] \right | = 4(-3) - 8(-3) = -4(-3) = 12](https://tex.z-dn.net/?f=%20%5Cleft%20%7C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bcc%7D4%26-3%5C%5C8%26-3%5Cend%7Barray%7D%5Cright%5D%20%5Cright%20%7C%20%3D%204%28-3%29%20-%208%28-3%29%20%3D%20-4%28-3%29%20%3D%2012%20%20)
Answer:
The answer is B.
Step-by-step explanation: