Answer:
Explanation:
1)<u> Principal quantum number, n = 2</u>
- n is the principal quantum number and indicates the main energy level.
<u>2) Second quantum number, ℓ</u>
- The second quantum number, ℓ, is named, Azimuthal quantum number.
The possible values of ℓ are from 0 to n - 1.
Hence, since n = 2, there are two possible values for ℓ: 0, and 1.
This gives you two shapes for the orbitals: 0 corresponds to "s" orbitals, and 1 corresponds to "p" orbitals.
<u>3) Third quantum number, mℓ</u>
- The third quantum number, mℓ, is named magnetic quantum number.
The possible values for mℓ are from - ℓ to + ℓ.
Hence, the poosible values for mℓ when n = 2 are:
- for ℓ = 1, mℓ = -1, 0, or +1.
<u>4) Fourth quantum number, ms.</u>
- This is the spin number and it can be either +1/2 or -1/2.
Therfore the full set of possible states (different quantum number for a given atom) for n = 2 is:
- (2, 0, 0 +1/2)
- (2, 0, 0, -1/2)
- (2, 1, - 1, + 1/2)
- (2, 1, -1, -1/2)
- (2, 1, 0, +1/2)
- (2, 1, 0, -1/2)
- (2, 1, 1, +1/2)
- (2, 1, 1, -1/2)
That is a total of <u>8 different possible states</u>, which is the answer for the question.
(4x-3)(2x+1) expand the brackets: 8x^2 -2x -3 = area
Answer:
x = all real numbers because this equation is an identity
Step-by-step explanation:
9 (1/3) = 9*1/3 = 3
3 + 8x = 4(2x + 3/4)
3 + 8x = 8x + 3
x = all real numbers because this equation is an identity
Let the given complex number
z = x + ix = 
We have to find the standard form of complex number.
Solution:
∴ x + iy = 
Rationalising numerator part of complex number, we get
x + iy = 
⇒ x + iy = 
Using the algebraic identity:
(a + b)(a - b) =
- 
⇒ x + iy = 
⇒ x + iy =
[ ∵
]
⇒ x + iy =
⇒ x + iy =
⇒ x + iy =
⇒ x + iy = 1 - i
Thus, the given complex number in standard form as "1 - i".
Answer:
So then the correct answer would be:
B) .9996
Step-by-step explanation:
The exact way to solve this problem is using the binomial distribution, assuming that our random variable of interest is "number of students living in apartments" represented by X and 
And we want this probability:
So we see that we satisfy the conditions and then we can apply the approximation.
If we appply the approximation the new mean and standard deviation are:
And then 
And we are interested on the following probability:
So then the correct answer would be:
B) .9996