here it is in bio they wont let me type it
By using the formula pie radius squared times the height

<em>r</em><em>=</em><em> </em><em><u>-</u></em><em><u>(</u></em><em><u>-</u></em><em><u>1</u></em><em><u>3</u></em><em><u>)</u></em><em><u>±</u></em><em><u>></u></em>
<em><u>
</u></em>
<u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u><u> </u>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>2</em><em>.</em><em>5</em>
<em>r</em><em>=</em><em> </em><em><u>1</u></em><em><u>3</u></em><em><u>±</u></em><em><u>1</u></em><em><u>7</u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>1</em><em>0</em>
<em>r</em><em>=</em><em><u>1</u></em><em><u>3</u></em><em><u>+</u></em><em><u>1</u></em><em><u>7</u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>1</em><em>0</em>
<em>r</em><em>=</em><em><u>1</u></em><em><u>3</u></em><em><u>-</u></em><em><u>1</u></em><em><u>7</u></em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>1</em><em>0</em>
<em>
</em>
<em>
</em>
Answer:
6 candy bards
Step-by-step explanation:
$3.12 (total)
each one is $0.52
3.12=0.52b
divide on both sides
3.12/0.52
=6
6 candy bars
(summarized, divide 0.52 by 3.12)
Answer: 1. 0.0256
2. 0.4096
Step-by-step explanation:
Binomial probability formula , to find the probability of getting x successes:
, where n= Total number of trials
p= Probability of getting success in each trial.
Let x be the number of customers will make purchase.
As per given , we have
p= 0.20
n= 4
1. The probability that 3 of the next 4 customers will make a purchase will be:-

![P(x=3)=(4)(0.20)^3(0.80)^{1}\ \ [\because\ ^nC_{n-1}=n]](https://tex.z-dn.net/?f=P%28x%3D3%29%3D%284%29%280.20%29%5E3%280.80%29%5E%7B1%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_%7Bn-1%7D%3Dn%5D)

Hence, the probability that 3 of the next 4 customers will make a purchase = 0.0256
2. The probability that none of the next 4 customers will make a purchase will be :

![P(x=0)=(1)(0.80)^{4}\ \ [\because\ ^nC_{0}=1]](https://tex.z-dn.net/?f=P%28x%3D0%29%3D%281%29%280.80%29%5E%7B4%7D%5C%20%5C%20%5B%5Cbecause%5C%20%5EnC_%7B0%7D%3D1%5D)

Hence, the probability that none of the next 4 customers will make a purchase= 0.4096