Answer:
2,54x10² mmHg
Explanation:
To solve this problem you can use Clausius-Clapeyron equation that serves to estimate vapor pressures or temperatures:

Where:
P1 is 1,00x10² mmHg
ΔHvap is 39,3 kJ/mol
R is gas constant 8,314x10⁻³ kJmol⁻¹K⁻¹
T1 is 34,90°C + 273,15 = 308,05 K
T2 is 54,81°C + 273,15 = 327,96 K
Thus:

Thus, P2 is <em>2,54x10² mmHg</em>
I hope it helps!
Answer:
D metallic
Explanation:
The chemical bonding which rises from electrostatic attractive force between the conduction electrons and the positively charged metal ions is called metallic bonding.
<u>It is sharing of the free electrons among the structure of the positively charged ions which are known as cations.
</u>
<u>In this type of bonding, these free electrons freely move in the crystal mattice of the metal. </u>
The bonding accounts for properties of metals, such as ductility, strength, electrical and thermal conductivity and resistivity and luster.
<span>A carbon - 12 atom and a
regular carbon atom would have the same number of protons which is 6. So a
carbon - 12 atom would have 6 protons. Both, however, would differ in the
number of neutrons. Carbon - 12 atom has 6 neutrons. To determine the mass
defect of a carbon - 12 atom, we have to add the total mass of protons and the
total mass of neutrons and subtract the known mass of a carbon - 12 atom. That
would be like this.<span>
6
(1.00728 amu) + 6 (1.00866 amu) = x
<span>6.04368
amu<span> + 6.05196 amu = x</span></span>
12.09564
amu = x
Then
subtract it with 12 amu to get the defect mass
12.09564
amu - 12.00000 amu = y
0.09564
amu = y
<span>So the
defect mass would be 0.09564 amu.</span></span></span>
<span>7.15 degrees C
The specific heat capacity of water is 4.1813 J/(g*K). So we have 3 values with the units kJ, g and J/(g*K). We can trivially convert from kJ to J by multiplying by 1000. And we want to get a result with the unit K (degrees Kelvin). So let's do it. First, let's cancel out the g unit by multiplying.
4.1813 J/(g*K) * 485 g = 2027.9305 J/K
Now we can cancel out the J unit by dividing. But if we divide by the energy, we'll be left with the reciprocal of K, not K. So instead divide by the J/K unit. So
14500 J / 2027.9305 J/K = 7.150146418 K
Rounding to 3 significant figures gives us 7.15 K.
And since degrees C and degrees K are the same size, the temperature will increase by 7.15 degrees C</span>
P2 = 40 atm
Explanation:
Given:
P1 = 2 atm
V1 = 1200 L
V2 = 60 L
P2 = ?
Using Boyle's law and solving for P2,
P1V1 = P2V2
P2 = (V1/V2)P1
= (1200 L/60 L)(2 atm)
= 40 atm